The expression of the chondromodulin-I (ChM-I) gene, a cartilage-specific gene, is regulated by the binding of Sp3 to the core promoter region, which is inhibited by the methylation of CpG in the target genome in the osteogenic lineage, osteosarcoma (OS) cells. The histone tails associated with the hypermethylated promoter region of the ChM-I gene were deacetylated by histone deacetylase 2 (HDAC2) in three ChM-I-negative OS cell lines. Treatment with an HDAC inhibitor induced the binding of Sp3 in one cell line, which became ChM-I-positive. This process was associated with acetylation instead of the dimethylation of histone H3 at lysine 9 (H3-K9) and, surprisingly, the demethylation of the core promoter region. The demethylation was transient, and gradually replaced by methylation after a rapid recovery of histone deacetylaion. These results represent an example of the plasticity of differentiation being regulated by the cell-specific plasticity of epigenetic regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.10.135DOI Listing

Publication Analysis

Top Keywords

chm-i gene
12
promoter region
12
epigenetic regulation
8
binding sp3
8
core promoter
8
histone
5
cell-specific epigenetic
4
regulation chm-i
4
gene
4
gene expression
4

Similar Publications

Lessons learned from research on choroideremia.

Ophthalmic Genet

January 2022

Departments of Medical Genetics and Ophthalmology & Visual Sciences, University of Alberta, Edmonton, AB, Canada.

Having devoted over 35 years of my professional life to various projects on choroideremia (CHM), I began to reflect on the many lessons that I learned along the way. One of the most important is: we should pay careful attention to possible, unintended psychological harm in clinical research. This lesson was learned early and then reinforced when I engaged CHM patients in an investigator-sponsored Phase IB clinical trial of ocular gene therapy for choroideremia.

View Article and Find Full Text PDF

The human chondromodulin-1 (Chm-1, Chm-I, CNMD, or Lect1) gene encodes a 334 amino acid type II transmembrane glycoprotein protein with characteristics of a furin cleavage site and a putative glycosylation site. Chm-1 is expressed most predominantly in healthy and developing avascular cartilage, and healthy cardiac valves. Chm-1 plays a vital role during endochondral ossification by the regulation of angiogenesis.

View Article and Find Full Text PDF

Breast cancer affects one in every eight women, and has been associated with higher rates of female mortality than any other cancer type, with the exception of lung cancer. It has been reported that chondromodulin I (ChM-I) was able to suppress tumor angiogenesis and growth in vivo. In order to investigate the antitumor action of ChM‑I on human breast cancer cells, a plasmid expressing ChM‑I was constructed and transfected into human breast cancer cells using an adenoviral vector.

View Article and Find Full Text PDF

We have explored the role of Chondromodulin-I (ChM-I) in chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) in 3-dimensional (3D) scaffold for cartilage tissue engineering. BMSCs of Sprague Dawley (SD) rats were cultured on poly-(L-lactic acid) [PLLA] scaffolds with different pore sizes (80-200 μm, 200-450 μm) with or without surface modification by chitosan. Cell viability, proliferation, and morphology were measured using confocal microscope and the CCK-8 method.

View Article and Find Full Text PDF

The influence of Chm-I knockout on ectopic cartilage regeneration and homeostasis maintenance.

Tissue Eng Part A

February 2015

1 Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China .

Ectopic ossification of mesenchymal stem cell (MSC) regenerated cartilage has greatly restricted its application in repairing subcutaneous cartilage defects (such as nasal or auricular). Different from MSCs, chondrocytes can maintain stable chondrogenic phenotype in ectopic microenvironment, which was speculated to be related with the existence of antiangiogenic factors such as Chondromodulin-I (Chm-I). Therefore, the purpose of this study was to illustrate whether Chm-I was indispensable for stable ectopic chondrogenesis by chondrocyte, which may help to solve the problem of MSC ectopic ossification in the future.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!