Potentiometric sensors are studied as viable candidates for the construction of high throughput DNA arrays. For preliminary investigations, such sensors were used in an HPLC setup in the present work. This avoided errors due to ionic contaminants or additives in the commercial samples. The oligonucleotides dT(10), dT(20) and dT(30) were used as test substances. The potentiometric sensors were of the coated wire type, containing PVC, DOP, MTDDACl and a synthetic podand urea receptor. The HPLC system consisted of a reversed phase column eluted with a phosphate buffer, triethylammoniumacetate (TEAA), and an acetonitrile gradient. Molar responses and sensitivities increased with increasing chain length of oligonucleotides, yielding detection limits as low as 10(-6)M (dT(30), injected concentration). The slopes of the calibration graphs were at least 23 mV/decade (dT(10)), which was much higher than expected. The results are discussed in view of the potential use of this sensor type in high throughput microarrays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138620707782152353 | DOI Listing |
Biosensors (Basel)
January 2025
Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors.
View Article and Find Full Text PDFAdv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFHeliyon
January 2025
Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India.
AI-optimized electrochemical aptasensors are transforming diagnostic testing by offering high sensitivity, selectivity, and rapid response times. Leveraging data-driven AI techniques, these sensors provide a non-invasive, cost-effective alternative to traditional methods, with applications in detecting molecular biomarkers for neurodegenerative diseases, cancer, and coronavirus. The performance metrics outlined in the comparative table illustrate the significant advancements enabled by AI integration.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!