Two-component relativistic density functional theory combined with high-level ab initio correlation techniques was applied to the study of the electronic structure and isomerism of Au(3). All calculations were performed with accurate small-core shape-consistent relativistic pseudopotentials. Density functional theory was used to determine the equilibrium structures of the Au(3) isomers and isomerization path and to estimate the contributions of spin-orbit effects to the ground state electronic energy along the path. The reliability of these estimates was verified through independent many-body multipartitioning perturbation theory calculations. Spin-orbit corrections were used to refine the isomerization energy profile computed by spin-orbit-free coupled cluster methods.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2795710DOI Listing

Publication Analysis

Top Keywords

spin-orbit effects
8
density functional
8
functional theory
8
effects isomerism
4
isomerism profile
4
profile au3
4
au3 initio
4
initio study
4
study two-component
4
two-component relativistic
4

Similar Publications

Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements.

Phys Chem Chem Phys

January 2025

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.

In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.

View Article and Find Full Text PDF

NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.

View Article and Find Full Text PDF

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.

View Article and Find Full Text PDF

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with adequate antigen presentation in deep-seated cancers remains challenging. Herein, to promote antigen presentation, an efficient dual-targeted photodynamic ICD inducer is developed. Due to the enhanced spin-orbit coupling and electron structure modulation, the Cy5-I-CF probe showcases exceptional reactive oxygen species (ROS) generation capacity within cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!