The human immunodeficiency virus type 1 (HIV-1) V3 loop is critical for coreceptor binding and principally determines tropism for the CCR5 and CXCR4 coreceptors. The recent crystallographic resolution of V3 shows that its base is closely associated with the conserved coreceptor binding site on the gp120 core, whereas more distal regions protrude toward the cell surface, likely mediating interactions with coreceptor extracellular loops. However, these V3-coreceptor interactions and the structural basis for CCR5 or CXCR4 specificity are poorly understood. Using the dual-tropic virus HIV-1(R3A), which uses both CCR5 and CXCR4, we sought to identify subdomains within V3 that selectively mediate R5 or X4 tropism. An extensive panel of V3 mutants was evaluated for effects on tropism and sensitivity to coreceptor antagonists. Mutations on either side of the V3 base (residues 3 to 8 and 26 to 33) ablated R5 tropism and made the resulting X4-tropic Envs more sensitive to the CXCR4 inhibitor AMD3100. When mutations were introduced within the V3 stem, only a deletion of residues 9 to 12 on the N-terminal side ablated X4 tropism. Remarkably, this R5-tropic Delta9-12 mutant was completely resistant to several small-molecule inhibitors of CCR5. Envs with mutations in the V3 crown (residues 13 to 20) remained dual tropic. Similar observations were made for a second dual-tropic isolate, HIV-1(89.6). These findings suggest that V3 subdomains can be identified that differentially affect R5 and X4 tropism and modulate sensitivity to CCR5 and CXCR4 inhibitors. These studies provide a novel approach for probing V3-coreceptor interactions and mechanisms by which these interactions can be inhibited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224606 | PMC |
http://dx.doi.org/10.1128/JVI.01793-07 | DOI Listing |
Curr Issues Mol Biol
November 2024
Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia.
Virus-like particles (VLPs) are an attractive vehicle for the delivery of Cas nuclease and guide RNA ribonucleoprotein complexes (RNPs). Most VLPs are produced by packaging SpCas9 and its sgRNA, which is expressed from the RNA polymerase III (Pol III)-transcribed U6 promoter. VLPs assemble in the cytoplasm, but U6-driven sgRNA is localized in the nucleus, which hinders the efficient formation and packaging of RNPs into VLPs.
View Article and Find Full Text PDFCurr HIV Res
January 2025
Clinical Laboratory, The People's Hospital of Baoding, Baoding, Hebei, 071000, China.
bioRxiv
October 2024
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
During human immunodeficiency virus (HIV-1) entry into host cells, binding to the receptors, CD4 and CCR5/CXCR4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer ((gp120-gp41)). CD4 binding induces Env to make transitions from its pretriggered conformation (PTC) to more "open" conformations that are sensitive to inhibition by antibodies, CD4-mimetic compounds (CD4mcs) and exposure to cold. Changes in functional membrane Envs have been identified that either stabilize or destabilize the PTC.
View Article and Find Full Text PDFFront Immunol
November 2024
Epi Biotech Co., Ltd., R&D Center, Incheon, Republic of Korea.
It has been demonstrated that CXCL12 inhibits hair growth via CXCR4, and its neutralizing antibody (Ab) increases hair growth in alopecia areata (AA). However, the molecular mechanisms have not been fully elucidated. In the present study, we further prepared humanized CXCL12 Ab for AA treatment and investigated underlying molecular mechanisms using single-cell RNA sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!