Objective: Insulin stimulates glucose transport in skeletal muscle by GLUT4 translocation from intracellular compartments to sarcolemma and t-tubules. We studied in living animals the recruitment of GLUT4 vesicles in more detail than previously done and, for the first time, analyzed the steady-state recycling and subsequent re-internalization of GLUT4 on an insulin bolus.
Research Design And Methods: A confocal imaging technique was used in GLUT4-enhanced green fluorescent protein-transfected superficial muscle fibers in living mice.
Results: During the first 30 min of insulin stimulation, very few superficially or deeply located GLUT4 storage vesicles (>1 microm) moved in toto. Rather, big vesicles were stationary in their original position at sarcolemma or t-tubules and were locally depleted of GLUT4 by budding off of smaller vesicles. Photobleaching experiments revealed that during initial translocation and steady-state recycling, GLUT4 microvesicles (<1 microm) move from perinuclear GLUT4 depots out along the plasma membrane. Furthermore, after photobleaching of t-tubule areas, recovery of GLUT4 was slow or absent, indicating no recycling of GLUT4 from perinuclear or adjacent (1 microm) or more distant (20 microm) t-tubule areas. During waning of insulin effect, GLUT4 was re-internalized to basal stores with a delay in t-tubules compared with sarcolemma, probably reflecting delayed disappearance of insulin from t-tubules.
Conclusions: In skeletal muscle, insulin reversibly stimulates local depletion of GLUT4 storage vesicles at sarcolemma and t-tubules rather than inducing movement of intact storage vesicles. During steady-state stimulation, recycling of GLUT4-containing microvesicles over longer distances (10-20 microm) takes place between perinuclear depots and sarcolemma but not at t-tubules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db06-1578 | DOI Listing |
J Neurochem
September 2024
Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina.
Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.
View Article and Find Full Text PDFFront Mol Neurosci
May 2024
Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China.
Biochem Pharmacol
July 2024
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
J Biol Chem
June 2024
Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India. Electronic address:
Management of chronic obesity-associated metabolic disorders is a key challenge for biomedical researchers. During chronic obesity, visceral adipose tissue (VAT) undergoes substantial transformation characterized by a unique lipid-rich hypoxic AT microenvironment which plays a crucial role in VAT dysfunction, leading to insulin resistance (IR) and type 2 diabetes. Here, we demonstrate that obese AT microenvironment triggers the release of miR-210-3p microRNA-loaded extracellular vesicles from adipose tissue macrophages, which disseminate miR-210-3p to neighboring adipocytes, skeletal muscle cells, and hepatocytes through paracrine and endocrine actions, thereby influencing insulin sensitivity.
View Article and Find Full Text PDFDiabetol Metab Syndr
April 2024
The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China.
Background: Type 2 diabetes mellitus (T2DM), characterized by β-cell dysfunction and insulin resistance (IR), presents considerable treatment challenges. Apelin is an adipocyte-derived factor that shows promise in improving IR; however, it is limited by poor targeting and a short half-life. In the present study, engineered small extracellular vesicles (sEVs) derived from Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) loaded with apelin were used to address the limitations of the therapeutic application of apelin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!