Previous studies have shown that, in acutely dispersed canine pulmonary artery smooth muscle cells (PASMCs), depletion of both functionally independent inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores activates capacitative Ca(2+) entry (CCE). The present study aimed to determine if cell culture modifies intracellular Ca(2+) stores and alters Ca(2+) entry pathways caused by store depletion and hypoxia in canine PASMCs. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in fura 2-loaded cells. Mn(2+) quench of fura 2 signal was performed to study divalent cation entry, and the effects of hypoxia were examined under oxygen tension of 15-18 mmHg. In acutely isolated PASMCs, depletion of IP(3)-sensitive Ca(2+) stores with cyclopiazonic acid (CPA) did not affect initial caffeine-induced intracellular Ca(2+) transients but abolished 5-HT-induced Ca(2+) transients. In contrast, CPA significantly reduced caffeine- and 5-HT-induced Ca(2+) transients in cultured PASMCs. In cultured PASMCs, store depletion or hypoxia caused a transient followed by a sustained rise in [Ca(2+)](i). The transient rise in [Ca(2+)](i) was partially inhibited by nifedipine, whereas the nifedipine-insensitive transient rise in [Ca(2+)](i) was inhibited by KB-R7943, a selective inhibitor of reverse mode Na(+)/Ca(2+) exchanger (NCX). The nifedipine-insensitive sustained rise in [Ca(2+)](i) was inhibited by SKF-96365, Ni(2+), La(3+), and Gd(3+). In addition, store depletion or hypoxia increased the rate of Mn(2+) quench of fura 2 fluorescence that was also inhibited by these blockers, exhibiting pharmacological properties characteristic of CCE. We conclude that cell culture of canine PASMCs reorganizes IP(3) and ryanodine receptors into a common intracellular Ca(2+) compartment, and depletion of this store or hypoxia activates voltage-operated Ca(2+) entry, reverse mode NCX, and CCE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00258.2007 | DOI Listing |
BMC Med
January 2025
Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.
Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.
Cells
December 2024
Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!