The delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for peptide loading of MHC class I molecules in the endoplasmic reticulum, TAP-independent translocation pathways have been proposed but not identified so far. Based on its overlapping substrate specificity with TAP, we herein investigated the ABC transporter ABCB9, also named TAP-like (TAPL). Remarkably, TAPL expression is strongly induced during differentiation of monocytes to dendritic cells and to macrophages. TAPL does not, however, restore MHC class I surface expression in TAP-deficient cells, demonstrating that TAPL alone or in combination with single TAP subunits does not form a functional transport complex required for peptide loading of MHC I in the endoplasmic reticulum. In fact, by using quantitative immunofluorescence and subcellular fractionation, TAPL was detected in the lysosomal compartment co-localizing with the lysosome-associated membrane protein LAMP-2. By in vitro assays, we demonstrate a TAPL-specific translocation of peptides into isolated lysosomes, which strictly requires ATP hydrolysis. These results suggest a mechanism by which antigenic peptides have access to the lysosomal compartment in professional antigen-presenting cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M708139200 | DOI Listing |
FEBS Lett
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia. Electronic address:
Conventional dendritic cells (cDC) are professional antigen-presenting cells able to prime naive T cells. Here, we present a protocol for ex vivo T cell priming by murine splenic cDC. We describe the steps of injecting fluorescently labeled antigens to mice, purifying antigen-bearing cDC, and priming antigen-specific T cells ex vivo.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.
Adv Exp Med Biol
November 2024
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, China.
As a professional antigen-presenting cell, dendritic cell (DC) plays an essential role in the connection of innate and adaptive immune responses. Ubiquitination is a post-translational mechanism of protein modification that plays a pivotal role in regulating DC maturation and function. To date, considerable progress has been made in understanding the underlying mechanisms of ubiquitination in modulating the function of DC in various diseases.
View Article and Find Full Text PDFLymph node (LN)-resident dendritic cells (DCs) are a promising target for vaccination given their professional antigen-presenting capabilities and proximity to a high concentration of immune cells. Direct intra-LN injection has been shown to greatly enhance the immune response to vaccine antigens compared to traditional intramuscular injection, but it is infeasible to implement clinically in a vaccination campaign context. Employing the passive lymphatic flow of antigens to target LNs has been shown to increase total antigen uptake by DCs more than inflammatory adjuvants, which recruit peripheral DCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!