Ubiquitin ligases MuRF1 and MAFbx in human skeletal muscle atrophy.

Joint Bone Spine

Cattedra di Ortopedia e Traumatologia, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Via Conca, Torrette, 60100 Ancona, Italy.

Published: January 2008

Introduction: Several pathological conditions can induce skeletal muscle atrophy and seem to share common enzyme pathways. In catabolic states where proteolysis is increased, two genes specific to muscle atrophy, MuRf1 and MAFbx, are upregulated. These encode ubiquitin ligases, which bind to and mediate ubiquitination of myofibrillar proteins for subsequent degradation during muscle atrophy.

Methods: Fifteen patients undergoing leg amputation were divided into two groups. Group A included 12 elderly patients (mean age 79years) amputated for vascular disease (complicated by diabetes in four), chronic osteomyelitis or squamous cell carcinoma. Group B included three car accident victims (mean age 32years) amputated due to acute arterial insufficiency. Gastrocnemius muscle biopsies were collected for a histochemical and immunohistochemical (anti-MuRf1, anti-MAFbx) study.

Results: Group A specimens showed a decreased cross-sectional fiber area and length, adipose tissue replacement, and MuRf1 and MAFbx immunoreactivity. Muscle cells showed MuRf1 and MAFbx subsarcolemmal immunoreactivity and weak extracellular matrix immunoreactivity. Group B samples exhibited mild muscle structural changes; they did not stain with anti-MuRf1 or anti-MAFbx, and neither did sections showing muscle degeneration and adipose tissue replacement.

Discussion: Results of our preliminary study showed upregulation of MuRf1 and MAFbx in atrophied muscle and support their role as regulatory peptides in various conditions that lead to muscle atrophy. Data suggest that the study of cellular pathways can help identify promising targets for effective new treatments for skeletal muscle atrophy.

Conclusion: The treatment of several orthopedic conditions is complicated by muscle atrophy; potential treatments could be directed to specific sites where these proteins are localized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbspin.2007.04.019DOI Listing

Publication Analysis

Top Keywords

murf1 mafbx
20
muscle atrophy
20
muscle
12
skeletal muscle
12
ubiquitin ligases
8
group included
8
anti-murf1 anti-mafbx
8
adipose tissue
8
murf1
5
mafbx
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!