Object: The aims of this study were to present the rationale for and the evolution of a staged, two-procedure paradigm for spinal surgery requiring pedicle screw instrumentation, and to evaluate the feasibility, safety, and efficacy of the technique.
Methods: The rationale for the new algorithm is presented for consideration in the form of unproven hypotheses subject to verification by subsequent studies. The first stage of the two-staged algorithm, performed in an interventional radiology (IR) setting, involves percutaneous placement of either headless pedicle screws or K-wire fragment placeholders of the trajectory for pedicle screws. The second stage, performed days or weeks later, involves open surgical completion of instrumentation placement and other surgical objectives. The techniques for IR percutaneous K-wire fragment and percutaneous screw placement evolved over the duration of the study. Instrumentation was placed in 126 pedicles in 25 patients. Efficacy was equated to the accuracy of screw placement, which was evaluated using computed tomography (CT). Algorithms incorporating correction for metal artifact were developed to determine deviation of the screws and K-wire fragments from proper position. Over 1500 measurements were made to evaluate K-wire fragment and screw position in the 116 instrumented pedicles for which CT data were available.
Results: Accuracy of placement (relative to both cortical and pedicle breaches or to only pedicle breaches) was 98 to 100% for K-wire fragments, 96 to 98% for screws following K-wire fragments, and 100% for percutaneous screws. The only adverse consequence of pedicle screw placement by this method was one infection that occurred 8 months postoperatively.
Conclusions: The staged, two-procedure paradigm for pedicle screw placement proved, within the limits of this study, to be feasible, safe, and effective; therefore, the unproven rationale behind the new paradigm merits further evaluation in a larger cohort of patients with randomized, matched controls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/SPI-07/11/521 | DOI Listing |
Arch Orthop Trauma Surg
January 2025
Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.
Iliosacral screw osteosynthesis is a widely recognized technique for stabilizing unstable posterior pelvic ring injuries, offering notable advantages, including enhanced mechanical stability, minimal invasiveness, reduced blood loss, and lower infection rates. However, the procedure presents technical challenges due to the complex anatomy of the sacrum and the proximity of critical neurovascular structures. While conventional fluoroscopy remains the primary method for intraoperative guidance, precise preoperative planning using multiplanar reconstructions and three-dimensional volume rendering is crucial for ensuring accurate placement of iliosacral or transsacral screws.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Orthopaedics, Phramongkutklao Hospital and College of Medicine, Bangkok 10400, Thailand.
Injuries involving the Atlas (C1) and Axis (C2) vertebrae of the cervical spine present significant clinical challenges due to their complex anatomy and potential for severe neurological impairment. Traditional imaging methods often lack the detailed visualization required for precise surgical planning. This study aimed to develop high-resolution 3D models of the C1 and C2 vertebrae to perform a comprehensive morphometric analysis, identify gender differences, and assess bilateral symmetry to enhance surgical accuracy.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea.
A 3D-printed guide is an effective method for accurately placing pedicle screws in dog vertebrae. While a conventional drill guide allows precise pilot hole formation, it can lead to potential screw wobbling during insertion. In this study, we applied a technique that assists with both drilling and screw insertion, and we compared the accuracy of screw placement using this approach with that achieved by the conventional drill guide.
View Article and Find Full Text PDFClin Neurol Neurosurg
January 2025
Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Objective: to study the anatomical feasibility of laser fiber insertion for interstitial thermal therapy via transorbital approach to the temporo-mesial structures (amygdala-hippocampus-parahippocampus complex).
Methods: Anatomical dissections were performed bilaterally on two human cadaveric heads via a transorbital approach, in which screws and laser fibers were used for magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) assisted by neuronavigation. In addition, eight transorbital trajectories were simulated using the transorbital entry points obtained from a cadaveric radiological study of four patients previously operated on for mesial temporal lobe epilepsy.
Cureus
December 2024
Department of Surgery, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA.
Subtrochanteric fractures in older patients are typically due to low-energy falls. The standard of care is intramedullary nailing. The Smith & Nephew Trigen Intertan (Memphis, TN, US) is an intramedullary nail with a novel design that incorporates two integrated compression screws.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!