Nebivolol reduces asymmetric dimethylarginine in endothelial cells by increasing dimethylarginine dimethylaminohydrolase 2 (DDAH2) expression and activity.

Pharmacol Res

Department of Biomedical and Surgical Sciences, Section of Internal Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro10, 37134 Verona, Italy.

Published: December 2007

Asymmetric dimethylarginine (ADMA) has been reported to affect the synthesis of nitric oxide (NO) in endothelial cells by inhibiting endothelial NO synthase (eNOS) activity and to cause endothelial dysfunction in humans. This study was conducted in human umbilical vein endothelial cells (HUVECs) to evaluate the effect of nebivolol, a selective beta1-adrenergic receptor antagonist, on ADMA concentration and on dimethylarginine dimethylaminohydrolase (DDAH2), the enzyme that regulates ADMA catabolism. Nebivolol dose-dependently decreased ADMA/symmetric dimethylarginine (SDMA) ratio (p from <0.01 to <0.001). This was parallelled by a dose-dependent increase in DDAH2 mRNA (p from <0.01 to <0.001) and protein expression (p from <0.01 to <0.001) and activity (p from <0.01 to <0.001). The small interference RNA (siRNA)-mediated knockdown of DDAH2 abolished the modification of DDAH2 expression (p<0.001) and ADMA/SDMA ratio (p<0.001) induced by nebivolol. In conclusion, the results of this study demonstrate that nebivolol reduces ADMA concentration by increasing DDAH2 expression and activity. Our in vitro findings describe a novel vascular effect of nebivolol and clearly identify this compound as the first antihypertensive agent that modulates DDAH2 in endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2007.09.015DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
asymmetric dimethylarginine
8
dimethylarginine dimethylaminohydrolase
8
dimethylaminohydrolase ddah2
8
dimethylarginine
5
endothelial
5
nebivolol reduces
4
reduces asymmetric
4
dimethylarginine endothelial
4
cells increasing
4

Similar Publications

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!