Gold nanoparticles (GNPs) with fully matched DNA duplexes on their surfaces aggregate together without molecular cross-linking at high salt concentrations. The mechanism of this non-cross-linking (NCL) interaction has been elusive. In this paper, NCL interaction between duplex-modified GNPs and a duplex-modified flat gold surface is presented for the first time. This new experimental platform has enabled us to study the NCL interaction between duplexes with different sequences. We immobilized 15-base single-stranded (ss) DNA onto the surfaces of GNPs with a diameter of 40nm and onto a flat gold substrate. The GNPs were hybridized with 15-base ssDNA at a low salt concentration. A microfluidic device was used for simultaneous delivery of the following three components onto the gold substrate: the duplex-modified GNPs, 15-base ssDNA to be hybridized onto the substrate, and NaCl at a high concentration. Adsorption of the GNPs onto the substrate was monitored using surface plasmon resonance imaging. When the GNPs and the substrate had an identical sequence, the adsorption behavior was analogous to the aggregation behavior of GNPs in test tubes. Furthermore, we investigated 12 cases in which the GNPs and the substrate had completely different sequences, and obtained results suggesting that the NCL attraction force primarily depends on the terminal base pairs of the duplexes. This means that the main mechanism of the NCL interaction is likely to be inter-duplex base stacking rather than formation of Holliday junctions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2007.09.017DOI Listing

Publication Analysis

Top Keywords

ncl interaction
16
flat gold
12
gnps substrate
12
gnps
9
gold nanoparticles
8
gold surface
8
surface plasmon
8
plasmon resonance
8
resonance imaging
8
duplex-modified gnps
8

Similar Publications

Trehalose Ameliorates Zebrafish Emotional and Social Deficits Caused by CLN8 Dysfunction.

Cells

January 2025

Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy.

CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL.

View Article and Find Full Text PDF

Introduction: Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium.

View Article and Find Full Text PDF

Background/objectives: Nucleolin is a major component of the nucleolus and is involved in various aspects of ribosome biogenesis. However, it is also implicated in non-nucleolar functions such as cell cycle regulation and proliferation, linking it to various pathologic processes. The aim of this study was to use differential gene expression analysis and Weighted Gene Co-expression Network analysis (WGCNA) to identify nucleolin-related regulatory pathways and possible key genes as novel therapeutic targets for cancer, viral infections and other diseases.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!