Covalent binding of toxic chemicals to cellular targets is a molecular interaction that initiates a wide array of adverse biological effects. The creation of a covalent bond can be cited as a key initiating step along many toxicity pathways which must be predicted in order to predict the potential of a chemical to cause specific harmful effects. Currently, quantitative structure-activity relationship (QSAR) models are being improved by focusing on endpoints such as simple electrophile reactivity for covalent interactions rather than on commonly used complex toxicity endpoints. The cytotoxicity and electrophilic reactivity of 10 p-substituted benzoquinone derivatives, which are well known electrophilic alkylating agents, were investigated under the premise that QSAR toxicity models can be improved when the molecular triggering event is considered. Hepatocyte toxicity was determined by incubation of individual compounds with freshly isolated rat or cryopreserved human hepatocyte suspensions. The potential for chemical reactivity between a chemical and cellular target was measured by determining non-enzymic reactivity with glutathione, representing thiol nucleophiles. The decline in free thiol moieties was measured to characterize the electrophile reactivity. It was found that the degree of rat hepatotoxicity induced by benzoquinones correlated with the rate at which they non-enzymically react with glutathione and to various global and atomic electronic frontier orbital parameters which described electrophilicity. Human hepatocytes showed similar results but the statistical significance was much lower. The QSAR expressions suggest that covalent binding reactivity serves as a good correlate to hepatotoxicity and could improve QSAR modeling for potential toxicity risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1312 | DOI Listing |
Physiol Rep
February 2025
Quebec Heart and Lung Institute - Laval University, Quebec, Quebec, Canada.
Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.
View Article and Find Full Text PDFJ Viral Hepat
February 2025
Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).
View Article and Find Full Text PDFRA-0002034 ( ) is a potent covalent inhibitor targeting the alphavirus nsP2 cysteine protease. The species-dependent pharmacokinetics and metabolism of were investigated to evaluate its therapeutic potential. Pharmacokinetic profiling revealed rapid clearance in mice, predominantly mediated by glutathione -transferase (GST)-catalyzed conjugation.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
Oncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!