Butane monooxygenase (BMO) catalyses the oxidation of alkanes to alcohols in the alkane-utilizing bacterium 'Pseudomonas butanovora'. Incubation of alkane-grown 'P. butanovora' with butyrate or propionate led to irreversible time- and O2-dependent loss of BMO activity. In contrast, BMO activity was unaffected by incubation with lactate or acetate. Chloramphenicol inhibited the synthesis of new BMO, but did not change the kinetics of propionate-dependent BMO inactivation, suggesting that the propionate effect was not simply due to it acting as a repressor of BMO transcription. BMO was protected from propionate-dependent inactivation by the presence of its natural substrate, butane. Although both the time and O2 dependency of propionate inactivation of BMO imply that propionate might be a suicide substrate, no evidence was obtained for BMO-dependent propionate consumption, or 14C labelling of BMO polypeptides by [2-(14)C]propionate during inactivation. Propionate-dependent BMO inactivation was also explored in mutant strains of 'P. butanovora' containing single amino acid substitutions in the alpha-subunit of the BMO hydroxylase. Propionate-dependent BMO inactivation in two mutant strains with amino acid substitutions close to the catalytic site differed from wild-type (one was more sensitive and the other less), providing further evidence that propionate-dependent inactivation involves interaction with the BMO catalytic site. A putative model is presented that might explain propionate-dependent inactivation of BMO when framed within the context of the catalytic cycle of the closely related enzyme, soluble methane monooxygenase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.2007/008441-0 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China. Electronic address:
Research on multifunctional luminous materials has garnered a lot of interest in the fields of optical sensing, biological imaging, white light-emitting diodes illumination, etc. A novel multifunctional phosphor of Pr-doped BiMoO (BMO: Pr), created via the solid-state method, was investigated in this work. X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectra, and fluorescence decay curves were employed to analyze the produced phosphors.
View Article and Find Full Text PDFEye (Lond)
January 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.
Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.
J Diabetes Complications
December 2024
Sinai Health System, Division of General Internal Medicine, Toronto, Ontario, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario. Electronic address:
Aims: To identify factors associated with use of novel diabetes medications among patients hospitalized under general internal medicine.
Methods: We conducted a cohort study of patients with type 2 diabetes mellitus (T2DM) hospitalized in Ontario, Canada between 2015 and 2020. We evaluated the patient- and physician-level factors associated with sodium-glucose cotransporter 2 inhibitor (SGLT2) and glucagon-like peptide 1 receptor agonist (GLP1R) use using a multivariable logistic regression model.
Environ Res
December 2024
School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea. Electronic address:
Highly efficient photocatalysts for degrading persistent antibiotics and synthetic dye pollutants under visible light are crucial for sustainable environmental remediation. In this study, we engineered a novel BiMoO (BMO)/NiAl-LDH (layered double hydroxide) hybrid catalyst with a unique 2D/2D heterostructure, optimized for the visible-light-driven elimination of ciprofloxacin (CPF) and hazardous synthetic dyes such as rhodamine B and methylene blue. The optimized BMO-30/LDH hybrid demonstrated exceptional photocatalytic performance, achieving nearly complete degradation of CPF and synthetic dyes with high mineralization efficiency, surpassing many previously reported state-of-the-art photocatalysts.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Food Science and Biotechnology Program, Department of Human Ecology, College of Agriculture, Science and Technology Delaware State University Dover Delaware USA.
Unlike lipid stability and oxidation studies in commonly used edible oils and margarines, margarines formulated with unconventional oils are not well characterized. This study investigated the effect of heat treatment (HT) on the stability and content of phytosterol in njangsa seed oil (NSO), bush mango oil (BMO), soybean oil (SBO), coconut oil (CCO), and margarines formulated from their blends: BN (BMO and NSO), BS (BMO and SBO), CN (CCO and NSO), CS (CCO and SBO), and commercial margarines (CM1 and CM2). Both oils and margarines were heat-treated at 130, 170, and 210°C for 10, 15, 20, and 120 min (only oils).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!