Ras is one of the most commonly mutated oncogenes in the array of human cancers. The mechanism by which Ras induces cellular transformation is, however, not fully elucidated. We present here evidence that oncogenic Ras suppresses the expression of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 (PTEN), and this action of oncogenic Ras is mediated by the Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway via up-regulation of c-Jun. Jun(+/+) cells undergo cellular transformation by oncogenic Ras, and restoration of wild-type PTEN, but not a phosphate-defective mutant of PTEN, induces apoptosis in these cells. Conversely, in Jun(-/-) cells, oncogenic Ras neither suppresses PTEN nor causes transformation, but rather it induces PTEN-dependent apoptosis. An apoptotic response to oncogenic Ras in Jun(-/-) cells can be prevented by suppressing PTEN expression. These findings imply that oncogenic Ras suppresses the apoptotic gene PTEN via the Raf-MEK-ERK-c-Jun pathway to induce antiapoptosis and cellular transformation. Together, our findings identify a novel molecular interface between the oncogenic and tumor suppressor pathways that regulates cellular transformation and survival.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-1827DOI Listing

Publication Analysis

Top Keywords

oncogenic ras
28
cellular transformation
20
ras suppresses
12
ras
9
pten expression
8
antiapoptosis cellular
8
oncogenic
8
transformation oncogenic
8
tumor suppressor
8
jun-/- cells
8

Similar Publications

A Review of Circulating Tumor DNA (ctDNA) in Pancreatic Cancer: Ready for the Clinic?

J Gastrointest Cancer

January 2025

Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.

Pancreatic ductal adenocarcinoma is a devastating disease which is associated with an increase in cancer-related death in the USA. The minority of patients are cured by surgery alone and typically require adjuvant chemotherapy in order to improve clinical outcomes. Circulating tumor DNA (ctDNA) is an emerging technology whereby microscopic levels of minimal residual disease (MRD) can be detected in the bloodstream.

View Article and Find Full Text PDF

Background And Objective: Because of the lack of effective targeted treatment options, docetaxel has long been the standard second-line therapy for patients with advanced non-small cell lung cancer, including the Kirsten rat sarcoma virus (KRAS) G12C mutation. The CodeBreak 200 trial demonstrated that sotorasib, a new drug targeting the G12C-mutated KRAS protein, modestly improved progression-free survival compared with docetaxel in patients whose cancer had progressed after receiving platinum chemotherapy and programmed cell death protein 1 (PD-1) / programmed death ligand 1 (PD-L1) inhibitors as first-line treatment. Consequently, sotorasib received temporary approval in Switzerland.

View Article and Find Full Text PDF

Recently, RIT1 has been implicated in a range of neurological disorders; however, its precise function in glioma pathogenesis is not yet well-defined. This study employed quantitative reverse transcription PCR (qRT-PCR), Western blotting (WB), immunohistochemistry (IHC) and additional methodologies to assess RIT1 expression levels in glioma tissues. Furthermore, the study investigated its influence on glioma progression through a series of functional experiments.

View Article and Find Full Text PDF

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!