Despite their relevance for risk assessment, the interactive effects of pesticide and predation cues are poorly understood because the underlying behavioral and physiological mechanisms are largely unknown. To explore these mechanisms, we reared larvae of the damselfly Coenagrion puella at three different predation risk levels and a range of environmentally realistic concentrations of three pesticides used worldwide (atrazine, carbaryl, and endosulfan). We compared key development responses (growth rate, developmental time, and final size) against food ingestion, assimilation, and conversion efficiency, and acetylcholinesterase (AChE) activity. Predation risk impaired all endpoints, including AChE activity, while the effects of pesticide stress were smaller for atrazine and endosulfan and absent for carbaryl. The effects of both stressors and their interaction on life history were mostly indirect through resource acquisition and energy allocation. Compensatory physiological mechanisms to pesticide stress (atrazine and endosulfan) were present in larvae reared in the absence of predation stress but were offset under predation stress. As a result, smaller size (atrazine and endosulfan) and lower growth rate (endosulfan) from pesticide stress were only found in the highest predation risk treatment. Our results provide insight as to the conditions under which interactions between stressors are likely to occur: damselfly populations at high density and living in fish ponds will be more affected by pesticides than populations at low densities in fishless ponds. By identifying variables that may shape the interaction between predation stress and other stressors such as pesticides, our mechanistic approach may help to bridge the gap between laboratory and field studies.

Download full-text PDF

Source
http://dx.doi.org/10.1890/07-0442.1DOI Listing

Publication Analysis

Top Keywords

physiological mechanisms
12
predation risk
12
pesticide stress
12
atrazine endosulfan
12
predation stress
12
predation
8
life history
8
behavioral physiological
8
effects pesticide
8
growth rate
8

Similar Publications

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

Habituation of the biological response to repeated psychosocial stress: a systematic review and meta-analysis.

Neurosci Biobehav Rev

January 2025

Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany. Electronic address:

Recurrent psychosocial stress poses a significant health challenge, prompting research into mechanisms of successful adaptation. Physiological habituation, defined as decreased reactivity to repeated stressors, is pivotal in protecting the organism from allostatic load. Here, we systematically review and meta-analyze data from studies investigating the capacity of central stress systems to habituate when repeatedly exposed to a standardized psychosocial stressor, the Trier Social Stress Test (k=47).

View Article and Find Full Text PDF

Prolactin in sleep and EEG regulation: new mechanisms and sleep-related brain targets complement classical data.

Neurosci Biobehav Rev

January 2025

Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University.

The role of prolactin in sleep regulation has been the subject of extensive research over the past 50 years, resulting in the identification of multiple, disparate functions for the hormone. Prolactin demonstrated a characteristic circadian release pattern with elevation during dark and diminution during light. High prolactin levels were linked to non-rapid eye movement sleep and electroencephalogram delta activity in humans.

View Article and Find Full Text PDF

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!