Chinook salmon (Oncorhynchus tshawytscha) have declined dramatically across the Pacific Northwest because of multiple human impacts colloquially characterized as the four "H's": habitat degradation, harvest, hydroelectric and other dams, and hatchery production. We use this conceptual framework to quantify the relative importance of major threats to the current status of 201 Chinook populations. Current status is characterized by two demographic indices: population density and trend. We employ path analytic models and information theoretic methods for multi-model inference. Our results indicate that dams most strongly affect variation in population density, while harvest and hatchery production most strongly affect variation in population trend. Comparable results arise when the sample size of the analysis is reduced to 22 Chinook populations within a smaller region typical of the scale at which salmon recovery planning is conducted. Results from these threat analyses suggest that recovery strategies targeting specific demographic indices, and those considering natural and human-mediated interdependencies of major threats, are most likely to succeed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/06-1637.1 | DOI Listing |
Background: There is a lack of evidence to suggest that outcomes of adolescent and adult-onset glomerular disease differ. Still, most glomerular disease trials include adults but exclude adolescents.
Methods: We designed a retrospective study using the CureGN database to compare individuals with adolescent-onset glomerular disease relative to individuals with older and younger age at onset.
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.
View Article and Find Full Text PDFMar Drugs
December 2024
Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway.
The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity.
View Article and Find Full Text PDFConserv Physiol
December 2024
Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
The physiological performance of ectotherms is influenced by temperature, raising concerns about the impact of global warming on ectotherms. Understanding the relationship between ecologically relevant temperatures and the physiological performance of ectotherms provides a basis for assessing their resilience to changing environments. Absolute aerobic scope (AAS) is a functional metric of the thermal performance of aquatic ectotherms.
View Article and Find Full Text PDFIntroduction: Canadian youth mental health (YMH) systems have the potential to urgently tackle the mental health treatment gap currently impacting young people, and stepped care (SC) is one model that can address this need. The adoption of SC models can guide the development of better-connected YMH systems by simplifying transitions and care pathways. To do so requires robust standards that are co-created across stakeholder groups, including with lived experience experts, to ensure the effective implementation of SC models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!