Available ribonucleic acid (RNA) amplification methods are extensively tested for reproducibility, but only a few studies additionally deal with potential amplification bias. On targeted arrays, we evaluated three amplification protocols, which are less time consuming than the commonly used T7-RNA polymerase based in vitro transcription protocols and therefore may be more suitable for clinical use: Template-switching polymerase chain reaction (PCR), Ribo-single primer isothermal amplification and a random primer-based PCR. Additionally, a more sensitive labelling method, Dendrimer labelling, was evaluated. All methods were compared to unamplified RNA labelled at reverse transcription. From our results, we conclude that RNA amplification with template-switching PCR is highly reproducible and results in a reliable representation of the starting RNA population. We then assessed whether RNA amplification of clinical breast and thyroid cancer samples with template-switching PCR showed robust performance when altered cycle numbers or partially degraded RNA were used. Template-switching PCR proved to be a very reliable method for global RNA amplification, even when starting from partially degraded RNA down to a RNA Integrity Number of 4.3. In conclusion, template-switching PCR amplification promises to help micro-array expression profiling of limited amounts of human samples on its way to a clinical routine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-007-0522-4DOI Listing

Publication Analysis

Top Keywords

rna amplification
20
template-switching pcr
16
amplification
9
rna
9
expression profiling
8
cancer samples
8
partially degraded
8
degraded rna
8
pcr
6
template-switching
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!