The heterobimetallic aluminosilicate [LAl(SLi)(micro-O)Si(OLi.2thf)(O(t)Bu)(2)](2) was prepared from the LAl(SH)(micro-O)Si(OH)(O(t)Bu)(2) (L = [HC{C(Me)N(Ar)}(2)](-), Ar = 2,6-di-(i)Pr(2)C(6)H(3)) ligand, which can also be hydrolyzed to LAl(OH.thf)(micro-O)Si(OH)(O(t)Bu)(2)- leading to the first aluminosilicate-dihydroxide soluble in organic solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b707895a | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
Background: Schistosoma haematobium is the causative pathogen for urogenital schistosomiasis. To achieve progress towards schistosomiasis elimination, there is a critical need for developing highly sensitive and specific tools to monitor transmission in near-elimination settings. Although antibody detection is a promising approach, it is usually unable to discriminate active infections from past ones.
View Article and Find Full Text PDFToxics
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
Recently, the activation of chlorine dioxide (ClO) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe) being employed to activate ClO for soil polycyclic aromatic hydrocarbon (PAH) removal.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China. Electronic address:
Nanohybrids combining phenylboronic acid-modified carbon dots (PCDs) and proteinase K have been engineered for addressing the formidable challenges of antimicrobial photodynamic therapy (aPDT) against bacterial biofilm infections, overcoming biofilm barrier obstruction, the limited diffusion of reactive oxygen species (ROS), and the inadequate ROS generation of traditional photosensitizers. PCDs are formulated for superior water solubility and robust singlet oxygen (O) production, mitigating issues related to dispersion and aggregation-induced quenching typical of conventional photosensitizers. The conjugation of phenylboronic acid to CDs not only enhanced O generation through increased electron-hole separation but also imparted strong bacterial binding capabilities to the PCDs, enabling broad-spectrum sterilization by maximizing the ROS-mediated bacterial destruction.
View Article and Find Full Text PDFJ Org Chem
January 2025
U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States.
Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!