In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells.

J Cell Sci

Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.

Published: November 2007

Connexin43 (Cx43, encoded by Gja1) is required for ovarian follicle development in the mouse. It is strongly expressed in granulosa cells, in which it forms intercellular gap junction channels that couple the cells metabolically. However, recent evidence indicates that undocked gap junction hemichannels can also have physiological roles such as mediating the release of small messenger molecules, including ATP. In this study, the presence of undocked Cx43 hemichannels in granulosa cells was revealed by dye uptake induced either by mechanical stimulation or by the reduction of extracellular divalent cations, both of which are known triggers for hemichannel opening. ATP release was also detected, and could be abolished by connexin-channel blockers. None of these putative hemichannel-mediated activities were detected in Cx43-deficient granulosa cells. Therefore, we hypothesized that hemichannels account for the essential role of Cx43 in folliculogenesis. To test this, a Cx43 mutant lacking the conserved cysteines on the extracellular loops (cys-less Cx43), reported to form hemichannels but not intercellular channels, was retrovirally expressed in Cx43-deficient granulosa cells. The infected cells were then combined with wild-type oocytes to make reaggregated ovaries, which were grafted into host kidneys. Although re-introduction of wild-type Cx43 rescued folliculogenesis, introduction of cys-less Cx43 did not. Therefore, although Cx43 gap junction hemichannels might play a role in ovarian folliculogenesis, their contribution does not supplant the need for intercellular gap junction channels.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.011775DOI Listing

Publication Analysis

Top Keywords

gap junction
20
granulosa cells
20
junction hemichannels
12
cx43
8
intercellular gap
8
junction channels
8
cx43-deficient granulosa
8
cys-less cx43
8
cells
7
hemichannels
6

Similar Publications

Pseudotunnel Magnetoresistance in Twisted van der Waals FeGeTe Homojunctions.

Adv Mater

January 2025

Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.

Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.

View Article and Find Full Text PDF

Understanding the Intricacies of Cellular Mechanisms in Remyelination: The Role of Circadian Rhythm.

Neurochem Int

January 2025

Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:

The term "circadian rhythm" refers to the 24-hour oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.

View Article and Find Full Text PDF

Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.

View Article and Find Full Text PDF

Mapping the Topological Proximity-Induced Gap in Multiterminal Josephson Junctions.

Phys Rev Lett

December 2024

Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals. The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements. We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences {ϕ_{i}}.

View Article and Find Full Text PDF

Aims: To compare the accuracy of marginal fit of CAD-CAM endocrown with two different preparation forms, i.e., endocrown with ferrule and endocrown without ferrule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!