There have been two major problems preventing applications of termite cellulases; one was difficulty for their hetelologous overexpression, and another is their low thermostability. We previously achieved adaptation of termite cellulase genes to an overexpression system of Escherichia coli by family shuffling of four orthologous cDNAs (Biosci. Biotechnol. Biochem., 2005; 69: 1711-1720). Using the adapted mutant cDNAs as parental genes combined with native-form cDNAs, we performed further family shuffling and obtained mutant cDNAs, which gave enzymes with improved thermostability. The best-evolved clone (PA68) was improved by 10 degrees C in maximum stability (retaining 90% original activity for 30 min incubation) from the parental enzymes, and kept 54% of its original activity for 150 min at 50 degrees C, whereas the most thermostable enzyme amongst the parents (A18) retained 30% of its original activity. PA68 showed 889 (micromoles of reducing sugars/min/mg of protein) in V(max) and 560 (micromoles of reducing sugars/min/mg of protein) in the specific activity against carboxymethylcellulose, which corresponds to 9.8 and 13.1 times of those of one of the ancestral enzymes rRsEG. In summary, we improved thermostability of the termite cellulase and increased the V(max) value and specific activity by combining only cDNAs encoding enzymes adapted for normal temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/gzm052 | DOI Listing |
FEBS Lett
December 2024
Department of Medical Chemistry, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan.
Phospholipids are asymmetrically distributed in the plasma membrane (PM), and scramblases disrupt this asymmetry by shuffling phospholipids. We recently identified mouse Tmem63b as a membrane structure-responsive scramblase. Tmem63b belongs to the TMEM63/OSCA family of ion channels; however, the conservation of the scramblase activity within this family remains unclear.
View Article and Find Full Text PDFPlant Cell
December 2024
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Non-heme iron (Fe), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of Fe/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others.
View Article and Find Full Text PDFGenetics
November 2024
Department of Ecology and Evolution, University of Lausanne, Lausanne 1011, Switzerland.
Homologous recombination is a meiotic process that generates diversity along the genome and interacts with all evolutionary forces. Despite its importance, studies of recombination landscapes are lacking due to methodological limitations and limited data. Frequently used approaches include linkage mapping based on familial data that provides sex-specific broad-scale estimates of realized recombination and inferences based on population LD that reveal a more fine scale resolution of the recombination landscape, albeit dependent on the effective population size and the selective forces acting on the population.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!