Common empirical models of stomatal conductivity often incorporate a sensitivity of stomata to the rate of leaf photosynthesis. Such a sensitivity has been predicted on theoretical terms by Cowan and Farquhar, who postulated that stomata should adjust dynamically to maximize photosynthesis for a given water loss. In this study, we implemented the Cowan and Farquhar hypothesis of optimal stomatal conductivity into a canopy gas exchange model, and predicted the diurnal and daily variability of transpiration for a savanna site in the wet-dry tropics of northern Australia. The predicted transpiration dynamics were then compared with observations at the site using the eddy covariance technique. The observations were also used to evaluate two alternative approaches: constant conductivity and a tuned empirical model. The model based on the optimal water-use hypothesis performed better than the one based on constant stomatal conductivity, and at least as well as the tuned empirical model. This suggests that the optimal water-use hypothesis is useful for modelling canopy gas exchange, and that it can reduce the need for model parameterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2007.01740.x | DOI Listing |
Environ Monit Assess
January 2025
School of Energy and Power Engineering, Xihua University, No. 9999 Hongguang Street, Chengdu, 610039, Sichuan Province, China.
Analysis of crop water requirement and its influencing factors are important for optimal allocation of water resources. However, research on variations of climatic factors and their contribution to wheat water requirement in Xinjiang is insufficient. In our study, daily meteorological data during 1961‒2017 in Xinjiang was collected.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1350 Copenhagen, Denmark.
Improving agricultural sustainability is a global challenge, particularly for China's high-input and low-efficiency cropping systems with environmental tradeoffs. Although national strategies have been implemented to achieve Sustainable Development Goals in agriculture, the potential contributions of crop switching as a promising solution under varying future climate change are still under-explored. Here, we optimize cropping patterns spatially with the targets of enhancing agriculture production, reducing environmental burdens, and achieving sustainable fertilization across different climate scenarios.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Soil Quality Aksu Observation Experimental Station, Aksu 843000, China.
The contradiction between increased irrigation demand and water scarcity in arid regions has become more acute for crops as a result of global climate change. This highlights the urgent need to improve crop water use efficiency. In this study, four irrigation volumes were established for drip-irrigated maize under plastic mulch: 2145 m ha (W1), 2685 m ha (W2), 3360 m ha (W3), and 4200 m ha (W4).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Jingjiang College, Jiangsu University, Zhenjiang 212013, China.
Heat waves (HW) are projected to become more frequent and intense with climate change, potentially enhancing the invasiveness of certain plant species. This study aims to compare the physiological and photosynthetic responses of the invasive and its native congener under simulated heat wave conditions (40.1 °C, derived from local historical data).
View Article and Find Full Text PDFEnviron Res Food Syst
March 2025
Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
Dietary modification has the potential to improve nutritional status and reduce environmental impacts of the food system. However, for many countries, the optimal composition of locally contextualized healthy and sustainable diets is unknown. The Gambia is vulnerable to climate-change-induced future water scarcity which may affect crop yields and the ability to supply healthy diets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!