The inhibitors involved in the lactic acid fermentation of table olives were investigated in aseptic olive brines of the Manzanilla and Gordal varieties. Phenolic and oleosidic compounds in these brines were identified by high-performance liquid chromatography with ultraviolet and electrospray ionization mass spectrometry detection, and several substances were also characterized by nuclear magnetic resonance. Among these compounds, the dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol showed the strongest antilactic acid bacteria activity, and its presence in brines could explain the growth inhibition of these microorganisms during olive fermentation. However, it was found that the dialdehydic form of decarboxymethyl elenolic acid, identified for the first time in table olives, and an isomer of oleoside 11-methyl ester were also effective against Lactobacillus pentosus and can, therefore, contribute to the antimicrobial activity of olive brines. It must also be stressed that the three new inhibitors discovered in table olive brines exerted a more potent antibacterial activity than the well-studied oleuropein and hydroxytyrosol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0719757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!