A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel G418 conjugate results in targeted selection of genetically protected hepatocytes without bystander toxicity. | LitMetric

G418, an aminoglycoside neomycin analogue, is an antimicrobial agent that interferes with protein synthesis and has been used extensively for selection of mammalian cell lines that possess neomycin resistance (NR). It is potent and nonspecific in its effects that occur through tight binding to ribosomal elements. Because of the potent intracellular effect, we wondered whether G418 could be used to select a specific cell type based on receptor-mediated endocytosis. The objective of this study was to target G418 specifically to liver cells via asialoglycoprotein receptors (AsGR) which are known to be highly selective for these cells. A novel G418 conjugate was synthesized chemically by coupling G418 to a galactose-terminating carrier protein, asialoorosomucoid (AsOR), in a molar ratio of 5:1. AsOR-G418 conjugates inhibited viability of AsGR (+) cells by 84.3%, while inhibition in AsGR (-) cells was only by 19%. In AsGR (+) cells, stably transfected with a NR gene, the conjugate decreased viability by less than 9%. Furthermore, incubation of conjugate in cocultures of AsGR (+), and AsGR (-) cells did not result in the loss of viability of neighboring AsGR (-) cells. Our data demonstrate for the first time that G418 can be covalently bound to AsOR to form a conjugate for hepatocyte-specific targeting and toxicity. AsOR-G418 conjugates may be useful tools for genetic manipulation of human liver cells in the presence of nonhepatic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc700277dDOI Listing

Publication Analysis

Top Keywords

asgr cells
20
cells
9
novel g418
8
g418 conjugate
8
liver cells
8
asor-g418 conjugates
8
asgr
7
g418
6
conjugate
5
conjugate targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!