Oxidative modification of human blood LDL induced by Cu2+, NaOCl, or 2,2-azobis-(2-aminopropane hydrochloride) was followed by their partial aggregation. Separation of oxidized LDL into aggregates and nonaggregated particles showed that they are characterized by a similar degree of oxidative modification. In contrast to nonaggregated particles, LDL aggregates in the same concentration significantly increased cholesterol content in smooth muscle cells from the intact (no involoved in atherosclerosis) human aortic intima. Our results indicate that atherogenicity of LDL oxidized by various factors is mainly associated with the formation of aggregates, but does not depend on the degree of oxidative modification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-007-0050-xDOI Listing

Publication Analysis

Top Keywords

oxidative modification
12
smooth muscle
8
muscle cells
8
ldl aggregates
8
nonaggregated particles
8
degree oxidative
8
ldl
5
oxidation-induced aggregation
4
aggregation ldl
4
ldl increases
4

Similar Publications

Research Progress of MEMS Gas Sensors: A Comprehensive Review of Sensing Materials.

Sensors (Basel)

December 2024

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.

The MEMS gas sensor is one of the most promising gas sensors nowadays due to its advantage of small size, low power consumption, and easy integration. It has been widely applied in energy components, portable devices, smart living, etc. The performance of the gas sensor is largely determined by the sensing materials, as well as the fabrication methods.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells.

Toxics

December 2024

Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.

Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways.

View Article and Find Full Text PDF

Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period.

View Article and Find Full Text PDF

Recent Advancements in CoO-Based Composites for Enhanced Electrocatalytic Water Splitting.

Micromachines (Basel)

November 2024

Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea.

The pursuit of efficient and economical catalysts for water splitting, a critical step in hydrogen production, has gained momentum with the increasing demand for sustainable energy. Among the various electrocatalysts developed to date, cobalt oxide (CoO) has emerged as a promising candidate owing to its availability, stability, and catalytic activity. However, intrinsic limitations, including low catalytic activity and poor electrical conductivity, often hinder its effectiveness in electrocatalytic water splitting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!