The state of adsorbed water (estimated from the dependence of the shape of the 1H NMR spectrum on the angle between the normal to the bilayers and the direction of the magnetic field) and the diffusion of water molecules in the direction of the normal to the bilayers (estimated by 1H NMR spectroscopy with the impulse gradient of magnetic field) in microscopically oriented dioleoylphosphatidylcholine bilayers have been studied depending on hydration. The dependences of the shape of the NMR spectrum on angle differ qualitatively only at concentrations of water greater and less than the concentration that is achieved upon hydration from saturated vapors chi(eq) (about 23 weight %). At concentrations below chi(eq), all water present in samples enters the hydrate shells of polar "heads" of lipids or is in the state of "rapid exchange" with the water of hydrate shells, with the result that the signal of spin echo for water is observed only in a narrow range of angles close to the "magic angle", 54 degrees C. At concentrations above xhi(eq), the signal of spin echo for water is retained at all orientations, indicating probably that part of water between the bilayers ("quasi-free water") is in the state of a "slow exchange" with water "bound" to polar "heads". It was found that the coefficient of self-diffusion of water across the system of bilayers inversely depends on the degree of hydration, which is described in the Tanner model with consideration of the self-diffusion of water molecules in the hydrophobic moiety of the bilayer. The permeability of the bilayer, the coefficient of distribution of molecules between the water and lipid phases, and the coefficient of self-diffusion of water in the hydrophobic moiety of the bilayer were estimated.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!