The effects of arsenic (As) were investigated on seed germination, root and shoot length and their biomass and some other factors to elucidate the toxicity of As. The results showed low concentrations of As (0-1 mg/kg) stimulated seed germination and the growth of root and shoot, however, these factors all decreased gradually at high concentrations of As (5-20 mg/kg). The contents of O2*-, MDA, soluble protein and peroxidase (POD) activity all increased with increasing As concentrations. Soluble sugar content, ascorbate peroxidase (APX), and superoxide dismutase (SOD) activities decreased at low concentrations of As, and increased at high concentrations of As. While acetylsalicylic acid (ASA) and chlorophyll contents, catalase (CAT) activity displayed increasing trend when the concentrations of As was lower than 1 mg/kg, and then decreasing trend. By polyacrylamide gel electrophoresis (PAGE), As induced the expression of POD isozymes of wheat seedlings. As induced the expression of CAT isozymes but inhibited the expression of SOD isozymes of wheat seedlings at concentrations lower than 1 mg/kg. However, As inhibited the expression of CAT isozymes but induced the expression of SOD isozymes at concentrations higher than 5 mg/kg. The results indicated As could exert harmfulness in the early development stage of wheat at inappropriate concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(07)60121-1DOI Listing

Publication Analysis

Top Keywords

seed germination
12
wheat seedlings
12
induced expression
12
concentrations
9
effects arsenic
8
root shoot
8
low concentrations
8
high concentrations
8
concentrations lower
8
lower mg/kg
8

Similar Publications

The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects.

View Article and Find Full Text PDF

Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat.

View Article and Find Full Text PDF

ALBA3 maintains male fertility under heat stress in plants.

J Integr Plant Biol

January 2025

School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.

View Article and Find Full Text PDF

Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting.

J Sci Food Agric

January 2025

Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China.

Background: Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent).

View Article and Find Full Text PDF

Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (G).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!