Purpose: To evaluate the effect of coating thickness on the relaxivity of iron oxide nanoparticles.

Materials And Methods: Monocrystalline superparamagnetic iron oxide nanoparticles (MIONs), coated with a polyethylene glycol (PEG)-modified, phospholipid micelle coating, with different PEG molecular weights, were prepared. The particle diameters were measured with dynamic light scattering (DLS) and electron microscopy (EM). The R1 and R2 of MIONs were measured using a bench-top nuclear magnetic resonance (NMR) relaxometer. pH was varied for some measurements. Monte Carlo simulations of proton movement in a field with nanometer-sized magnetic inhomogeneities were performed.

Results: Increasing the molecular weight of the PEG portion of the micelle coating increased overall particle diameter. As coating thickness increases, the R2 decreases and the R1 increases. Changing pH has no effect on relaxivity. The Monte Carlo simulations suggest that the effect of coating size on R2 relaxivity is determined by two competing factors: the physical exclusion of protons from the magnetic field and the residence time for protons within the coating zone.

Conclusion: Coating thickness can significantly impact the R2, and the R2/R1 ratio, of a MION contrast agent. An understanding of the relationship between coating properties and changes in relaxivity is critical for designing magnetic nanoparticle probes for molecular imaging applications using MRI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.21194DOI Listing

Publication Analysis

Top Keywords

coating thickness
16
iron oxide
12
coating
9
oxide nanoparticles
8
micelle coating
8
monte carlo
8
carlo simulations
8
magnetic
5
relaxivity
5
thickness magnetic
4

Similar Publications

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!