Visualizing in vivo liposomal drug delivery in real-time.

J Drug Target

Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305-5148, USA.

Published: November 2007

Liposomes have tremendous potential for efficient small molecule delivery. Previous studies, however, have been hampered by an inability to monitor their distribution and release of contents. Here, the authors demonstrate the real time monitoring of small molecule delivery using luciferin as a model. To monitor the release of luciferin in vivo, luciferin was packaged in thermosensitive liposomes and delivered into transgenic mice that constitutively express luciferase. Their experiments show the thermally induced release of the liposomal content in real time. In addition, the model provides evidence that the thermosensitive liposomes are stable over a long period of time ( approximately 3 weeks), and still release their content upon heating. These data present a strategy to monitor liposomal drug delivery in vivo with luciferin.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10611860701538651DOI Listing

Publication Analysis

Top Keywords

liposomal drug
8
drug delivery
8
small molecule
8
molecule delivery
8
real time
8
vivo luciferin
8
thermosensitive liposomes
8
visualizing vivo
4
vivo liposomal
4
delivery
4

Similar Publications

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

The transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Paeoniflorin is a natural pharmaceutical ingredient with a widely biological activity. However, as a hydrophilic drug, the problem of low transdermal rate limits its clinical application. To overcome this shortage, LUVs were used as biocompatible carriers of paeoniflorin in this study.

View Article and Find Full Text PDF

Liposomal Irinotecan: A Review as First-Line Therapy in Metastatic Pancreatic Adenocarcinoma.

Drugs

January 2025

Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.

Liposomal irinotecan (Onivyde), also known as liposomal pegylated irinotecan, has been developed with the intent of maximising anti-tumour efficacy and minimising drug-related toxicities compared with conventional formulations of this topoisomerase 1 inhibitor. In combination with fluorouracil, leucovorin and oxaliplatin (NALIRIFOX), liposomal irinotecan is approved in the USA and the EU for first-line therapy of eligible patients with metastatic pancreatic adenocarcinoma. In a phase III clinical trial, NALIRIFOX significantly improved overall survival (OS) and progression free survival (PFS) compared with gemcitabine plus nanoparticle albumin bound paclitaxel (nab-paclitaxel) as first-line treatment of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!