This paper describes a novel method for creating surface models of multi-material components using dual energy computed tomography (DECT). The application scenario is metrology and dimensional measurement in industrial high resolution 3D x-ray computed tomography (3DCT). Based on the dual source / dual exposure technology this method employs 3DCT scans of a high precision micro-focus and a high energy macro-focus x-ray source. The presented work makes use of the advantages of dual x-ray exposure technology in order to facilitate dimensional measurements of multi-material components with high density material within low density material. We propose a workflow which uses image fusion and local surface extraction techniques: a prefiltering step reduces noise inherent in the data. For image fusion the datasets have to be registered. In the fusion step the benefits of both scans are combined. The structure of the specimen is taken from the low precision, blurry, high energy dataset while the sharp edges are adopted and fused into the resulting image from the high precision, crisp, low energy dataset. In the final step a reliable surface model is extracted from the fused dataset using a local adaptive technique. The major contribution of this paper is the development of a specific workflow for dimensional measurements of multi-material industrial components, which takes two x-ray CT datasets with complementary strengths and weaknesses into account. The performance of the workflow is discussed using a test specimen as well as two real world industrial parts. As result, a significant improvement in overall measurement precision, surface geometry and mean deviation to reference measurement compared to single exposure scans was facilitated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2007.70598 | DOI Listing |
Bioact Mater
February 2025
Medical School of Chinese PLA, Beijing, 100039, China.
Zn-based biodegradable metals (BMs) are regarded as revolutionary biomaterials for bone implants. However, their clinical application is limited by insufficient mechanical properties, delayed degradation, and overdose-induced Zn toxicity. Herein, innovative multi-material additive manufacturing (MMAM) is deployed to construct a Zn/titanium (Ti) hetero-structured composite.
View Article and Find Full Text PDFAdv Mater
November 2024
Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University, Altenberger Str. 69, Linz, 4040, Austria.
Drawing inspiration from nature, soft materials are at the core of a transformation toward adaptive and responsive engineered systems, capable of conquering demanding terrain and safe when interacting with biological life. Despite recent advances in 3D printing of soft materials, researchers are still far from being able to print complex soft systems where a multitude of different components need to work together symbiotically. Closing this gap necessitates a platform that unites diverse materials into one synergetic process.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42, 38108 Brunswick, Germany.
Additive manufacturing (AM) of components using material extrusion (MEX) offers the potential for the integration of functions through the use of multi-material design, such as sensors, actuators, energy storage, and electrical connections. However, there is a significant gap in the availability of electrical composite properties, which is essential for informed design of electrical functional structures in the product development process. This study addresses this gap by systematically evaluating the resistivity (DC, direct current) of 14 commercially available filaments as unprocessed filament feedstock, extruded fibers, and fabricated MEX-structures.
View Article and Find Full Text PDFRev Sci Instrum
October 2024
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan.
The infra-red video bolometer (IRVB) is a diagnostic equipped with an infra-red camera that measures the total radiated power in thousands of lines of sight within a large field of view. Recently validated in MAST-U [Fderici et al., Rev.
View Article and Find Full Text PDFHeliyon
September 2024
Oak Ridge National Lab, 2350 Cherahala Blvd., Knoxville, TN, 37932, USA.
Directed energy deposition (DED) is a form of additive manufacturing available across a variety of laser spot diameter values, often referred to as spot sizes. However, there is no method to easily transfer process parameters across discrete spot sizes, leading to DED process parameters that are equipment specific and not widely applicable. In this study, a strategy is proposed and investigated for five spot sizes that keep the areal energy density constant while varying power, feed rate, and powder flow during the deposition of 316L stainless steel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!