All proteins of the intermembrane space of mitochondria are encoded by nuclear genes and synthesized in the cytosol. Many of these proteins lack presequences but are imported into mitochondria in an oxidation-driven process that relies on the activity of Mia40 and Erv1. Both factors form a disulfide relay system in which Mia40 functions as a receptor that transiently interacts with incoming polypeptides via disulfide bonds. Erv1 is a sulfhydryl oxidase that oxidizes and activates Mia40, but it has remained unclear how Erv1 itself is oxidized. Here, we show that Erv1 passes its electrons on to molecular oxygen via interaction with cytochrome c and cytochrome c oxidase. This connection to the respiratory chain increases the efficient oxidation of the relay system in mitochondria and prevents the formation of toxic hydrogen peroxide. Thus, analogous to the system in the bacterial periplasm, the disulfide relay in the intermembrane space is connected to the electron transport chain of the inner membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064786PMC
http://dx.doi.org/10.1083/jcb.200707123DOI Listing

Publication Analysis

Top Keywords

disulfide relay
12
relay system
12
system mitochondria
8
respiratory chain
8
intermembrane space
8
disulfide
4
system
4
mitochondria
4
mitochondria connected
4
connected respiratory
4

Similar Publications

Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.

View Article and Find Full Text PDF

Dbi1 is an oxidoreductase and an assembly chaperone for mitochondrial inner membrane proteins.

EMBO Rep

January 2025

LMU Munich, Biozentrum-Cell Biology, 82152, Planegg-Martinsried, Germany.

Import and assembly of mitochondrial proteins into multimeric complexes are essential for cellular function. Yet, many steps of these processes and the proteins involved remain unknown. Here, we identify a novel pathway for disulfide bond formation and assembly of mitochondrial inner membrane (IM) proteins.

View Article and Find Full Text PDF

The mitochondrial disulphide relay machinery is essential for the import and oxidative folding of many proteins in the mitochondrial intermembrane space. Its core component, the import receptor MIA40 (also CHCHD4), serves as an oxidoreductase but also as a chaperone holdase, which initially interacts with its substrates non-covalently before introducing disulphide bonds for folding and retaining proteins in the intermembrane space. Interactome studies have identified diverse substrates of MIA40, among them the intrinsically disordered HCLS1-associated protein X-1 (HAX1).

View Article and Find Full Text PDF

ER Oxidoreductin 1-Like Activity of Cyclic Diselenides Drives Protein Disulfide Isomerase in an Electron Relay System.

Chembiochem

November 2024

Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.

Disulfide formation generally involves a two-electron oxidation reaction between cysteine residues. Additionally, disulfide formation is an essential post-translational modification for the structural maturation of proteins. This oxidative folding is precisely controlled by an electron relay network constructed by protein disulfide isomerase (PDI), with a CGHC sequence as the redox-active site, and its family enzymes.

View Article and Find Full Text PDF

Angiogenesis plays a vital role for postnatal development and tissue repair following ischemia. Reactive oxygen species (ROS) generated by NADPH oxidases (NOXes) and mitochondria act as signaling molecules that promote angiogenesis in endothelial cells (ECs) which mainly relies on aerobic glycolysis for ATP production. However, the connections linking redox signaling with glycolysis are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!