Rats that consumed a high-fat and high-sucrose (HF1) diet or a high-fat (HF2) diet developed hepatic steatosis. The alteration in nutritional status affected hepatic cytochrome P450 and UDP-glucuronosyltransferase (UGT) levels. Messenger RNA and protein levels of UGT1A1 and UGT1A6 in the liver but not the jejunum were increased in male rats fed the HF1 diet. These protein levels did not increase in HF2-fed male rats or HF1-fed female rats. In contrast, the CYP1A2 protein level was decreased in the HF1 but not HF2 diet group, whereas CYP2E1 and CYP4A protein levels were elevated in the HF2 but not HF1 diet group. No significant difference in the organic anion transporter polypeptide (Oatp) 1, Oatp2, multidrug resistance-associated protein (Mrp) 2, or Mrp3 protein levels was found between the standard and HF1 diet groups of male rats. Consumption of the HF1 diet affected the in vivo metabolism of acetaminophen (APAP) such that the area under the APAP-glucuronide plasma concentration-time curve was elevated 2.1-fold in male rats but not female rats. In liver cell nuclei of male rats but not female rats, constitutive androstane receptor (CAR) and proliferator-activated receptor alpha (PPARalpha) protein levels were significantly enhanced by intake of the HF1 diet. Additionally, administration of the PPARalpha agonist clofibrate to male rats up-regulated UGT1A1 and UGT1A6 and down-regulated CYP1A2 in the liver. Taken together, these results indicate that nutritional status may gender-specifically influence the expression and activation of CAR and PPARalpha in liver cell nuclei, and this effect appears to be associated with alterations in UGT1A1 and UGT1A6 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.107.017731DOI Listing

Publication Analysis

Top Keywords

male rats
28
hf1 diet
24
protein levels
20
ugt1a1 ugt1a6
12
female rats
12
rats
11
diet
9
constitutive androstane
8
androstane receptor
8
proliferator-activated receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!