Knotted and topologically complex proteins as models for studying folding and stability.

Curr Opin Chem Biol

UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095-1569, USA.

Published: December 2007

Among proteins of known three-dimensional structure, only a few possess complex topological features such as knotted or interlinked (catenated) protein backbones. Such unusual proteins offer potentially unique insights into folding pathways and stabilization mechanisms. They also present special challenges for both theorists and computational scientists interested in understanding and predicting protein-folding behavior. Here, we review complex topological features in proteins with a focus on recent progress on the identification and characterization of knotted and interlinked protein systems. Also, an approach is described for designing an expanded set of knotted proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2179896PMC
http://dx.doi.org/10.1016/j.cbpa.2007.10.002DOI Listing

Publication Analysis

Top Keywords

complex topological
8
topological features
8
knotted interlinked
8
proteins
5
knotted
4
knotted topologically
4
topologically complex
4
complex proteins
4
proteins models
4
models studying
4

Similar Publications

Drug-induced autoimmunity (DIA) is a non-IgE immune-related adverse drug reaction that poses substantial challenges in predictive toxicology due to its idiosyncratic nature, complex pathogenesis, and diverse clinical manifestations. To address these challenges, we developed InterDIA, an interpretable machine learning framework for predicting DIA toxicity based on molecular physicochemical properties. Multi-strategy feature selection and advanced ensemble resampling approaches were integrated to enhance prediction accuracy and overcome data imbalance.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.

View Article and Find Full Text PDF

In eukaryotes, mismatch repair begins with M ut S h omolog (MSH) complexes, which scan newly replicated DNA for mismatches. Upon mismatch detection, MSH complexes recruit the PCNA- stimulated endonuclease Mlh1-Pms1/PMS2 (yeast/human), which nicks the DNA to allow downstream proteins to remove the mismatch. Past work has shown that although Mlh1-Pms1 is an ATPase and this activity is important , ATP is not required to nick DNA.

View Article and Find Full Text PDF

Basal Cell Carcinoma (BCC) and Actinic Keratosis (AK) are prevalent skin conditions with significant health complications. The molecular mechanisms underlying these conditions and their potential shared pathways remain ambiguous despite their prevalence. Therefore, this study aims to elucidate the common molecular pathways and potential therapeutic targets for BCC and AK through comprehensive computational network analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!