In mosquitoes, yolk protein precursor (YPP) gene expression is activated after a blood meal through the synergistic action of a steroid hormone and the amino acid/target of rapamycin (TOR) signaling pathway in the fat body. We investigated the role of insulin signaling in the regulation of YPP gene expression. The presence of mosquito insulin receptor (InR) and the Protein kinase B (PKB/Akt) in the adult fat body of female mosquitoes was confirmed by means of the RNA interference (RNAi). Fat bodies stimulated with insulin were able to promote the phosphorylation of ribosomal S6 Kinase, a key protein of the TOR signaling pathway. Importantly, insulin in combination with 20-hydroxyecdysone activated transcription of the YPP gene vitellogenin (Vg), and this process was sensitive to the phosphoinositide-3 kinase (PI-3k) inhibitor LY294002 as well as the TOR inhibitor rapamycin. RNAi-mediated knockdown of the mosquito InR, Akt, and TOR inhibited insulin-induced Vg gene expression as well as S6 Kinase phosphorylation in in vitro fat body culture assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2104489 | PMC |
http://dx.doi.org/10.1016/j.ibmb.2007.08.004 | DOI Listing |
Am J Sports Med
January 2025
Orthopaedic Surgery, Weill Medical College of Cornell University, New York, New York, USA.
Background: Microfragmented adipose tissue has been proposed for intra-articular treatment of knee osteoarthritis. There are little data comparing the outcomes of treatment between microfragmented adipose tissue and other biological treatments.
Purpose: To perform a systematic review and meta-analysis comparing microfragmented aspirated fat injections to other orthobiologics, hyaluronic acid, and corticosteroid injections for symptomatic knee osteoarthritis.
Alzheimers Dement
December 2024
GloNeuro Academy, Noida, Uttar Pradesh, India.
Background: Obesity is caused by the buildup of excess body fat, which upsets homeostasis. Genetic, epigenetic, and behavioural variables all have a role in the pathophysiology of obesity. In turn, obesity throws off the sleep cycle, leading to sleep problems.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Arizona, Tucson, AZ, USA.
Background: Research into Alzheimer's Disease (AD) pathomechanisms frequently utilizes animal models with dominant mutations; however, the vast majority (>95%) of AD cases are idiopathic. Animal models with AD risk factors represent an approach with potentially greater translational validity. The predominant genetic risk factor for AD is the Apolipoprotein E ε4 (APOE4) polymorphism, with APOE4 homozygosity conferring approximately 15-fold higher risk relative to the normative APOE3/3 genotype.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade de Brasília, Brasília, Brazil.
Background: Recent research has demonstrated that the consumption of high fat diet (HFD) can lead to metabolic dysfunctions and cognitive impairments in both mice models and humans. Given the potential negative effects of HFD, it is crucial to explore non-pharmacological alternatives that can serve as a potential treatment for both metabolic dysfunctions and behavioral effects induced by HFD. Therefore, the aim of this study is to assess the impact of chronic and intermittent exposure to cold temperature on the metabolic and cognitive changes associated with HFD consumption.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.
Background: Apolipoprotein ε4 (APOE4) is a major risk factor for Alzheimer's disease (AD). APOE4 carriers display altered whole-body metabolism, including increased blood glucose and inuslin. Although conditions affecting whole-body metabolism like obesity and diabetes are AD risk factors, knowledge regarding the contribution of peripheral tissues to this effect is minimal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!