We studied the influence of alien cytoplasm of spring goatgrass Aegilops ovata L. on some physiological parameters in winter wheat (Triticum aestivum L.), Mironovskaya 808, under normal conditions and in the case of modified source-sink relations. Measurements of relative rates of plant dry matter growth and its distribution among organs, CO2 exchange (photosynthesis upon light saturation and dark respiration), content of sugars (sucrose + glucose + fructose) and their ratio in leaves, frost hardiness, and indices of membrane stability and damage of leaves by frost have shown that, on average, alloplasmic hybrid differed from the initial cultivar by almost all parameters. Reduced frost hardiness, increased index of leaf damage by frost, lowered leaf content of sugars, and reduced sucrose/(glucose + fructose) ratio in the alloplasmic hybrid were combined with higher roots/leaves ratio, relative rate of dry matter growth, and photosynthesis and respiration rates. The alloplasmic hybrid was more tolerant to decreased source strength in source-sink relations as compared to the initial cultivar.

Download full-text PDF

Source

Publication Analysis

Top Keywords

alloplasmic hybrid
16
source-sink relations
12
winter wheat
8
alien cytoplasm
8
dry matter
8
matter growth
8
content sugars
8
fructose ratio
8
leaves frost
8
frost hardiness
8

Similar Publications

The effect of T. aestivum chromosomes 1A and 1D on fertility of alloplasmic recombinant (H. vulgare)-T. aestivum lines depending on cytonuclear compatibility.

Vavilovskii Zhurnal Genet Selektsii

October 2024

Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия.

The effect of T. aestivum L. chromosomes 1A and 1D on fertility of recombinant bread wheat allolines of the same origin carrying the cytoplasm of barley H.

View Article and Find Full Text PDF

The mitochondrial and plastid genomes of L. cv. Taichung 65.

Plant Biotechnol (Tokyo)

March 2023

Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan.

A highly contiguous mitochondrial and plastid genome sequences of a rice cultivar, Taichung 65, were determined by a hybrid approach with long- and short-read sequences. The assembled mitochondrial genome was 465,453 bases in length with an overall GC content of 43.8%.

View Article and Find Full Text PDF

Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress.

Biol Res

November 2023

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs).

View Article and Find Full Text PDF

As the trace signal molecules widely existing in plants, plant hormones can regulate physiological responses of plants at low concentrations. At present, the effect of plant endogenous hormones on wheat male fertility has attracted attention, but the molecular mechanism underlying fertility regulation is unclear. Given this, the anthers of five isonuclear alloplasmic male sterile lines and their maintainer line were RNA-sequenced.

View Article and Find Full Text PDF

Development of mitochondrial simple sequence repeat markers to simultaneously distinguish cytoplasmic male sterile sources in cotton.

Funct Integr Genomics

December 2022

State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.

Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!