A 68-year man with severe Parkinson's disease who had been implanted with deep brain stimulators into both sides, received an emergency surgery uneventfully under general anesthesia with standard monitoring. During the operation, the surgeon turned off the impulse generators and used bipolar diathermy. Postoperatively, he had transient episodes of severe Parkinson symptoms, which were controled by levodopa drugs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

deep brain
8
[anesthetic management
4
management patient
4
patient deep
4
brain stimulators]
4
stimulators] 68-year
4
68-year man
4
man severe
4
severe parkinson's
4
parkinson's disease
4

Similar Publications

Multiomics unravels the complexity of male obesity: a prospective observational study.

J Transl Med

January 2025

Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.

Background: Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach.

Methods: Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed.

View Article and Find Full Text PDF

Predictors and Implications of Myocardial Injury in Intracerebral Hemorrhage.

Clin Neuroradiol

January 2025

Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.

Purpose: Myocardial injury, indicated by an elevation of high-sensitive cardiac Troponin (hs-cTnT), is a frequent stroke-related complication. Most studies investigated patients with ischemic stroke, but only little is known about its occurrence in patients with intracerebral hemorrhage (ICH). This study aimed to assess the frequency, predictors, and implications of myocardial injury in ICH patients.

View Article and Find Full Text PDF

Alpha and high beta subthalamic intermittent activity correlates with freezing of gait severity in Parkinson's disease.

Clin Neurophysiol

January 2025

Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil. Electronic address:

Introduction: Freezing of gait (FOG) is a disabling symptom that affects over half of Parkinson's disease patients (PD) and hinders the ability to walk. Subthalamic nucleus (STN) deep brain stimulation (DBS) effectiveness in ameliorating the FOG remains controversial, lacking a reliable electrophysiological biomarker from local field potentials (LFP).

Methods: The LFP-STN rhythms bandpower and dynamics were characterized at rest across groups in a cohort of 23 patients (14 with FOG, and 9 without, n-FOG).

View Article and Find Full Text PDF

In-vivo high-resolution χ-separation at 7T.

Neuroimage

January 2025

Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea. Electronic address:

A recently introduced quantitative susceptibility mapping (QSM) technique, χ-separation, offers the capability to separate paramagnetic (χ) and diamagnetic (χ) susceptibility distribution within the brain. In-vivo high-resolution mapping of iron and myelin distribution, estimated by χ-separation, could provide a deeper understanding of brain substructures, assisting the investigation of their functions and alterations. This can be achieved using 7T MRI, which benefits from a high signal-to-noise ratio and susceptibility effects.

View Article and Find Full Text PDF

Multimodal cross-scale context clusters for classification of mental disorders using functional and structural MRI.

Neural Netw

January 2025

The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

The brain is a complex system with multiple scales and hierarchies, making it challenging to identify abnormalities in individuals with mental disorders. The dynamic segregation and integration of activities across brain regions enable flexible switching between local and global information processing modes. Modeling these scale dynamics within and between brain regions can uncover hidden correlates of brain structure and function in mental disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!