Background: In this study, we evaluated if PITX2 DNA methylation is a marker for disease recurrence in lymph node-negative (LNN), steroid hormone receptor-positive (HR+) breast cancer patients. In addition, we studied the association between PITX2 DNA methylation and PITX2 gene expression.
Patients And Methods: PITX2 DNA-methylation was measured in tumor tissue from 412 LNN/HR+ breast cancer patients who had not received any adjuvant systemic treatment. In addition, PITX2 DNA-methylation and mRNA expression was evaluated in 32 breast cancer cell lines.
Results: In univariate Cox regression analysis, DNA-methylation of PITX2 as a continuous variable was associated with early distant metastasis (HR = 1.71; P < 0.01) and poor overall survival (HR = 1.71; P < 0.01). In multivariate analysis together with the established prognostic factors age, tumor size and tumor grade, and steroid hormone receptor levels, both associations retained their significance (for MFS, HR = 1.74; P < 0.01; for OS, HR = 1.46; P = 0.02). In the breast cancer cell lines, PITX2 DNA methylation was inversely association with PITX2A and PITX2B mRNA expression (P < 0.01).
Conclusions: Hypermethylation of PITX2 is, in cell lines, negatively associated with PITX2 mRNA expression and, in clinical specimens, positively associated with breast cancer disease progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10549-007-9800-8 | DOI Listing |
Breast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.
View Article and Find Full Text PDFBiomark Res
December 2024
Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Plastic Surgery, University College London, London, UK.
Introduction: Breast cancer is the leading cause of cancer amongst women in the United Kingdom, with implant-based reconstruction (IBR) using Acellular Dermal Matrices (ADM) gaining popularity for post-mastectomy procedures. This study compares outcomes of different ADMs that are commonly used in women undergoing IBR, this was short and long-term complications.
Methods: A systematic search of MEDLINE, Embase, CENTRAL, and CDSR databases was performed according to the PRISMA guidelines, focusing on women undergoing IBR with FlexHD, AlloDerm, Bovine, or Porcine ADMs.
Cell Mol Life Sci
December 2024
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!