Ultraviolet-B (UV-B) radiation to thylakoid membrane and fatty acid profile has been investigated in cyanobacterium, Spirulina platensis. The thylakoid membrane was isolated by mechanical disruption of the freeze-dried and lysozyme-treated cells followed by differential density gradient centrifugation and morphological variations were examined. UV radiation distorted the membrane on the outer side with reduced chlorophyll a (chl a) content compared to its untreated counterpart. Liquid chromatography-mass spectrometry (LC-MS) was used for characterization of chl a of the thylakoid membrane. UV-B exposure resulted in alterations in the pigment-protein complexes 47 kDa and 43 kDa. Furthermore, 94 kDa and 20 kDa protein appeared in UV-B-exposed thylakoid membrane of S. platensis. The composition of fatty acid in response to UV-B radiation was detected by gas chromatography-mass spectrometry having 23.5% saturated fatty acid (SFA), 76.4% monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA). In contrast to its UV-B-untreated counterpart, SFA was 46.6%, and MUFA and PUFA were 53.3%. Our findings suggest that UV-B radiation not only affects membrane morphology and its protein profile but also reduces saturated fatty acid and increases unsaturated fatty acids in S. platensis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-007-9049-9DOI Listing

Publication Analysis

Top Keywords

fatty acid
28
thylakoid membrane
20
uv-b radiation
16
kda kda
12
radiation thylakoid
8
fatty
8
membrane fatty
8
acid profile
8
spirulina platensis
8
chromatography-mass spectrometry
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!