Current cellular models of ischemic preconditioning (IPC) rely on inducing preconditioning in vitro and may not accurately represent complex pathways triggered by IPC in the intact heart. Here, we show that it is possible to precondition the intact heart and to subsequently isolate individual ventricular myocytes that retain the protection triggered by IPC. Myocytes isolated from Langendorff-perfused hearts preconditioned with three cycles of ischemia-reperfusion were exposed to metabolic inhibition and reenergization. Injury was assessed from induction of hypercontracture and loss of Ca(2+) homeostasis and contractile function. IPC induced an immediate window of protection in isolated myocytes, with 64.3 +/- 7.6% of IPC myocytes recovering Ca(2+) homeostasis compared with 16.9 +/- 2.4% of control myocytes (P < 0.01). Similarly, 64.1 +/- 5.9% of IPC myocytes recovered contractile function compared with 15.3 +/- 2.2% of control myocytes (P < 0.01). Protection was prevented by the presence of 0.5 mM 5-hydroxydecanoate during the preconditioning stimulus. This early protection disappeared after 6 h, but a second window of protection developed 24 h after preconditioning, with 54.9 +/- 4.7% of preconditioned myocytes recovering Ca(2+) homeostasis compared with 12.6 +/- 2.9% of control myocytes (P < 0.01). These data show that "true" IPC of the heart confers both windows of protection in the isolated myocytes, with a similar temporal relationship to in vivo preconditioning of the whole heart. The model should allow future studies in isolated cells of the protective mechanisms induced by true ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00980.2007 | DOI Listing |
Eur J Appl Physiol
December 2024
Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain.
Purpose: The aim of this study was to determine whether a soccer match affects the rapid force-generating capacity of the hamstring muscles, given their key role in both horizontal ground reaction force production during sprint biomechanics, and in the deceleration of the shank during the late swing phase, where rapid force production is essential owing to time constraints. Therefore, the research objective was to determine soccer match-induced hamstrings residual fatigue and recovery through rate of torque development (RTD) and associated biochemical parameters.
Methods: The recovery kinetics of hamstrings RTD metrics by the 90°:20° test, together with serum biomarkers (creatine kinase, mitochondrial creatine kinase, transaminases, malondialdehyde, irisin), were assessed in 19 male, regional first-division soccer players (age = 20.
Int J Mol Sci
October 2024
Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico.
Medicina (Kaunas)
February 2023
Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia.
: Diabetic gastroenteropathy (DG) is a common complication of diabetes mellitus type 2. Interstitial cells are non-neural cells of mesenchymal origin inserted between nerve elements and smooth muscle cells, necessary for normal function and peristaltic contractions in the gastrointestinal (GI) tract. There are at least two types of interstitial cells within the GI muscle layer-interstitial cells of Cajal (ICC) and interstitial platelet-derived growth factor receptor α-positive cells (IPC).
View Article and Find Full Text PDFJ Clin Med
February 2023
Department of Anesthesiology, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan.
Blood removal with air tourniquets for a long time induces muscle damage after reperfusion. Ischemic preconditioning (IPC) has a protective effect against ischemia-reperfusion injury in striated muscle and myocardium. However, the mechanism of action of IPC on skeletal muscle injury is unclear.
View Article and Find Full Text PDFCombined pre-/postcapillary pulmonary hypertension (Cpc-PH), a complication of left heart failure, is associated with higher mortality rates than isolated postcapillary pulmonary hypertension alone. Currently, knowledge gaps persist on the mechanisms responsible for the progression of isolated postcapillary pulmonary hypertension (Ipc-PH) to Cpc-PH. Here, we review the biomechanical and mechanobiological impact of left heart failure on pulmonary circulation, including mechanotransduction of these pathological forces, which lead to altered biological signaling and detrimental remodeling, driving the progression to Cpc-PH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!