This paper evaluated the wear resistance of resin composite materials with fillers which were modified with a novel hydrophobic silane coupling agent. The novel silane coupling agent containing hydrophobic phenyl group 3-(3-methoxy-4-methacryloyloxyphenyl)propyltrimethoxysilane (p-MBS) was synthesized. The experimental light-cure hybrid composites containing 85wt% of filler modified with this silane were formulated. Twelve specimens were prepared for the three-body-wear test with the ACTA machine and the collected data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparison test as the post hoc test. The wear of the composites containing fillers treated with p-MBS was significantly lower compared with the composite materials containing fillers pretreated with 3-methacryloyloxypropyltrimethoxysilane or the commercially composites (AP-X and ELS extra low shrinkage) after a wear test for 200,000 cycles (p<0.05). It is suggested that the resin composites containing fillers modified with the novel hydrophobic silane has high wear resistant, because of the coupling layers treated with this silane had an excellent affinity with the base resin and formed a highly hydrophobic layer on the filler surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2007.09.001DOI Listing

Publication Analysis

Top Keywords

silane coupling
12
hydrophobic silane
8
composite materials
8
materials fillers
8
coupling agent
8
three-body-wear resistance
4
resistance experimental
4
composites
4
experimental composites
4
composites filler
4

Similar Publications

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Pd(0)/Pd(II) Electromerism Triggered by Lewis Base Coordination to a Redox-Active Silicon Z-Type Ligand.

Angew Chem Int Ed Engl

December 2024

Universität Heidelberg: Universitat Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.

Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.

View Article and Find Full Text PDF

Cross-Dehydrogenative Coupling of Secondary Amines with Silanes Catalyzed by Agostic Iridium-NSi Species.

Inorg Chem

December 2024

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain.

An active catalytic system for the cross-dehydrogenative coupling (CDC) of a wide range of secondary amines with silanes is reported. The iridium(III) derivatives [Ir(H)(X)(κ-NSi)(L)] (NSi = {4,8-dimethylquinoline-2-yloxy}dimethylsilyl; L = coe, X = Cl, ; L = coe, X = OTf, ; L = PCy, X = Cl, ; L = PCy X = OTf, ), which are stabilized by a weak yet noticeable Ir···H-C agostic interaction between the iridium and one of the C-H bonds of the 8-Me substituent of the NSi ligand, have been prepared and fully characterized. These species have proven to be effective catalysts for the CDC of secondary amines with hydrosilanes.

View Article and Find Full Text PDF

Organo-photocatalytic dearomative hydrosilylation of indoles with silanes.

Org Biomol Chem

December 2024

College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) 266580, Qingdao, P. R. China.

A photocatalytic dearomative hydrosilylation reaction of indole derivatives with silanes has been accomplished for the synthesis of valuable indolinyl silanes through a carbon-silyl radical coupling process with the cooperation of photoredox and hydrogen atom transfer catalytic systems composed of 3DPA2FBN (2,4,6-tris(diphenylamino)-3,5-difluorobenzonitrile), (i-Pr)SiSH, and base additives. This protocol is featured by a broad substrate scope, transition metal-free conditions, high diastereoselectivities and applications in natural product derivatives.

View Article and Find Full Text PDF

Fundamental Insights into Copper-Epoxy Interfaces for High-Frequency Chip-to-Chip Interconnects.

ACS Appl Mater Interfaces

December 2024

Gordon A. and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

Future processes and materials are needed to enable multichip packages with chip-to-chip (C2C) data rates of 50 GB/s or higher. This presents a fundamental challenge because of the skin effect, which exacerbates signal transmission losses at high frequencies. Our results indicate that smooth copper interconnects with relatively thin cuprous oxides (CuO, Cu) and amine-functional silane adhesion promoters improve interfacial adhesion with epoxy dielectrics by nearly an order of magnitude.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!