Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity.

Mol Cell

Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Korea.

Published: October 2007

Human SIRT1 is an NAD+-dependent deacetylase protein that plays a role in cell death/survival, senescence, and endocrine signaling. While its substrates, including p53, have been well characterized, no direct regulators are known. We describe here a nuclear protein, active regulator of SIRT1 (AROS), which directly regulates SIRT1 function. AROS enhanced SIRT1-mediated deacetylation of p53 both in vitro and in vivo, and it inhibited p53-mediated transcriptional activity. AROS activity was abrogated by the SIRT1 inhibitors splitomicin and nicotinamide and by SIRT1 small interfering RNA (siRNA). In addition, AROS was unable to cooperate in p53 inactivation in an AROS-binding-defective SIRT1 mutant. Finally, knockdown of endogenous AROS using an antisense expression vector enhanced p21WAF1 expression and increased both the G0/G1 population and apoptosis in response to DNA damage, while AROS overexpression improved cell survival. To our knowledge, AROS is the first direct SIRT1 regulator to be identified that modulates p53-mediated growth regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2007.08.030DOI Listing

Publication Analysis

Top Keywords

sirt1
9
active regulator
8
regulator sirt1
8
aros
7
sirt1 cooperates
4
cooperates sirt1
4
sirt1 facilitates
4
facilitates suppression
4
p53
4
suppression p53
4

Similar Publications

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Objectives: Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH's precise function and mechanisms in addressing cardiac fibrosis are still not fully understood.

Materials And Methods: In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction.

View Article and Find Full Text PDF

Tau hyper-phosphorylation has been recognized as an essential contributor to neurodegeneration in Alzheimer's disease (AD) and related tauopathies. In the last decade, tau hyper-phosphorylation has gained considerable concern in AD therapeutic development. Tauopathies are manifested with a broad spectrum of symptoms, from dementia to cognitive decline and motor impairments.

View Article and Find Full Text PDF

Mangiferin Protects Mesenchymal Stem Cells Against DNA Damage and Cellular Aging via SIRT1 Activation.

Mech Ageing Dev

January 2025

Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, Republic of Korea. Electronic address:

The protective effects of mangiferin (MAG) against etoposide- and high glucose (HG)-induced DNA damage and aging were investigated in human bone marrow-mesenchymal stem cells (hBM-MSCs). Etoposide, a topoisomerase II inhibitor, was used to induce double-strand breaks (DSBs) in hBM-MSCs, resulting in increased genotoxicity, elevated levels of the DNA damage sensor ATM and CDKN1A, and decreased levels of the aging markers H3 and H4. MAG activated AMPK and SIRT1, thus protecting against DSB-induced damage.

View Article and Find Full Text PDF

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!