Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethylene induced cotton (Gossypium hirsutum var RST-39) leaf abscission has been characterized by measuring the activities of ACC synthase (ACS, E.C. 4.4.1.14), ACC oxidase (ACO, E.C. 1.14.17.4) and cellulase (E.C. 3.2.1.4). In addition, a leaf abscission specific cDNA (GhCel1) has been cloned from cotton, which belongs to the alpha(2) subgroup of cellulases that possess a C-terminus carbohydrate-binding domain. Measurement of enzyme activity in the abscission zones of cotton leaf explants exposed to ethylene for 48h compared to non-treated controls indicated a more than 5-fold increase in the activity of ACS, 1.2-fold increase in the activity of ACO and about 2.7-fold increase in the activity of cellulase in the ethylene treated explants. This increase was accompanied by a substantial decrease in the force required to separate the petiole from the stem (break strength) and an increased accumulation of cellulase transcript in the abscission zone. Treatment of explants with 1-Methylcyclopropene (1-MCP) prior to ethylene resulted in significant inhibition of enzyme activities and transcript accumulation. It is concluded that ethylene response of cotton leaf abscission leads to higher cellulase expression and increased activities of ethylene biosynthesis enzymes in the abscission zone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2007.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!