Congenital disorders of glycosylation (CDG) are being recognized as a rapidly growing and complex group of disorders. The pathophysiology results from depressed synthesis or remodeling of oligosaccharide moieties of glycoproteins. The ultimate result is the formation of abnormal glycoproteins affecting their structure and metabolic functions. The most thoroughly studied subset of CDG are the type I defects affecting N-glycosylation. Causal mutations occur in at least 12 different genes which encode primarily monosaccharide transferases necessary for N-glycosylation in the endoplasmic reticulum. The broad clinical presentation of these glycosylation defects challenge clinicians to test for these defects in a variety of clinical settings. The first described CDG was a phosphomannomutase deficiency (CDG-Ia). The original method used to define the glycosylation defect was isoelectric focusing (IEF) of transferrin. More recently, the use of other charge separation methods and electrospray-mass spectrometry (ESI-MS) has proven valuable in detecting type I CDG defects. By mass resolution, the under-glycosylation of transferrin is characterized as the total absence of one or both N-linked oligosaccharide. Beyond providing a new understanding of the structure of transferrin in type I CDG patients, it is adaptable to high throughput serum analysis. The use of transferrin under-glycosylation to detect the type I CDG provides limited insight into the specific site of the defect in oligosaccharide assembly since its value is constrained to observation of the final product of glycoprotein synthesis. New analytical targets and tools are converging with the clinical need for diagnosis of CDG. Defining the biosynthetic sites responsible for specific CDG phenotypes is in progress, and ten more type I defects have been putatively identified. This review discusses current methods, such as IEF and targeted proteomics using mass spectrometry, that are used routinely to test for type I CDG disorders, along with some newer approaches to define the defective synthetic sites responsible for the type I CDG defects. All diagnostic endeavors are followed by the quest for a reliable treatment. The isolated success of CDG-Ib treatment will be described with the hope that this may expand to other type I CDG disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03256251DOI Listing

Publication Analysis

Top Keywords

type cdg
24
cdg
11
type
9
congenital disorders
8
disorders glycosylation
8
analysis transferrin
8
type defects
8
cdg defects
8
sites responsible
8
cdg disorders
8

Similar Publications

Background: Cases of congenital disorders of glycosylation (CDGs) are rare, and the occurrence of hemorrhagic infarction is also rare. The etiology is unclear.

Observations: A 3-year-old Asian boy with CDG type 1A was hospitalized with pneumonia.

View Article and Find Full Text PDF

Exploiting O-GlcNAc dyshomeostasis to screen O-GlcNAc transferase intellectual disability variants.

Stem Cell Reports

December 2024

Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK. Electronic address:

O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants.

View Article and Find Full Text PDF

Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2) and knock-in (Atp6v0a2) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS.

View Article and Find Full Text PDF

Congenital disorder of glycosylation type Iy (CDG-Iy) is an X-linked monogenic inherited disease caused by variants in the SSR4 gene. To date, a total of 11 variants have been identified in 14 CDG-Iy patients. Our study identified a novel canonical splicing variant, c.

View Article and Find Full Text PDF
Article Synopsis
  • Autosomal dominant congenital disorder of glycosylation (CDG) type Iw is caused by a mutation in a specific gene and differs from most CDGs, which are typically autosomal recessive.
  • A 17-year-old male presented with a range of symptoms including macrocephaly, epilepsy, and developmental delays, but initial genetic tests and biochemical analyses did not indicate a clear diagnosis.
  • Genome sequencing revealed a novel mutation that disrupts a glycosylation site, and the patient was ultimately diagnosed with CDG type Iw based on abnormal transferrin profiling, illustrating the variability in genetic disorders and the need for comprehensive testing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!