Hole formation and growth on the top layer of thin symmetric diblock copolymer films, forming an ordered lamellar structure parallel to the solid substrate (silicon wafer) within these films, is investigated as a function of time (t), temperature (T), and film thickness (l), using a high-throughput experimental technique. The kinetics of this surface pattern formation process is interpreted in terms of a first-order reaction model with a time-dependent rate constant determined uniquely by the short-time diffusive growth kinetics characteristic of this type of ordering process. On the basis of this model, we conclude that the average hole size, lambda(h), approaches a steady-state value, lambda(h)(t-->infinity) identical with lambda(h,infinity)(T), after long annealing times. The observed change in lambda(h,infinity)(T) with temperature is consistent with a reduction of the surface elasticity (Helfrich elastic constant) of the outer block copolymer layer with increasing temperature. We also find that the time constant, tau(T), characterizing the rate at which lambda(h)(t) approaches lambda(h,infinity)(T), first decreases and then increases with increasing temperature. This temperature variation of tau(T) is attributed to two basic competing effects that influence the rate of ordering in block copolymer materials: the reduction in molecular mobility at low temperatures associated with glass formation and a slowing of the rate of ordering due to fluctuation effects associated with an approach to the block copolymer film disordering temperature (T(d)) from below.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la701084x | DOI Listing |
ACS Nano
January 2025
Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, Material Science and Engineering, 135 Yaguan Rd, Haihe Education Park, 300350, Tianjin, CHINA.
Self-assembled bottlebrush block copolymers (BBCPs) offer a vibrant, eco-friendly alternative to traditional toxic pigments and dyes, providing vivid structural colors with significantly reduced environmental impact. Scaling up the synthesis of these polymers for practical applications has been challenging with conventional batch methods, which suffer from slow mass and heat transfer, inadequate mixing, and issues with reproducibility. Precise control over molecular weight and dispersity remains a significant challenge for achieving finely tuned color appearances.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210004, China.
The escalating prevalence of skeletal muscle disorders highlights the critical need for innovative treatments for severe injuries such as volumetric muscle loss. Traditional treatments, such as autologous transplants, are constrained by limited availability and current scaffolds often fail to meet complex clinical needs. This study introduces a new approach to volumetric muscle loss treatment by using a shape-memory polymer (SMP) based on block copolymers of perfluoropolyether and polycaprolactone diol.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Institut Europeen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095, Montpellier, France. Electronic address:
Current bacterial infections clinical treatments, such as intravenous antibiotic administration and local injection, suffer from short action duration, repeated administrations, and severe cell toxicity. To address these limitations, it is imperative to develop sustained drug release system with prolonged antimicrobial effects. In this work, a hybrid system was prepared using EDC/NHS catalyzed crosslinking-based carboxymethyl chitosan (CMCS) hydrogel as a carrier to encapsulate biodegradable nanoparticles (NPs) loaded with vancomycin, an efficient antibacterial drug.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:
High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!