Systematic protein expression studies in the brain of exercising and sedentary animals have not been carried out for far. Signaling proteins are main structures regulating hippocampal function and we decided to determine differences in signaling protein levels in rat hippocampus by a proteomic approach. Aged, male Sprague-Dawley rats, 23 months old, were used for the study: the first group consisted of sedentary rats, the second of rats with voluntary exercise from 5 to 23 months and the third was performing involuntary exercise on a treadmill from 5 to 23 months. 2-DE with subsequent mass spectrometrical identification of spots followed by quantification of spots was carried out. Annexin A5, A3, phosphatidylethanolamine-binding protein, guanine nucleotide-binding protein G(I)/G(S)/G(T), 14-3-3 protein gamma, 14-3-3 protein zeta/delta, prohibitin, visinin-like 1, protein phosphatase 1, septin 8, phosphoprotein enriched in astrocytes 15, transcription factor Pur-beta, EEA1 protein, SH3 domain-binding glutamic acid-rich-like protein 2, and cell division cycle 42 showed differential protein levels in the three groups. These results form the basis for functional studies elucidating mechanisms and links between exercise and hippocampal signaling and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200700336 | DOI Listing |
Med Sci Monit
December 2024
Department of Neurology, HangZhou Third People's Hospital, Hangzhou, Zhejiang, China.
BACKGROUND This study aimed to analyze the risk factors of central nervous system (CNS) infection caused by reactivation of varicella zoster virus (VZV) and provide reference for the prevention and early diagnosis of VZV-associated CNS infection. MATERIAL AND METHODS A prospective study was conducted on 1030 patients with acute herpes zoster (HZ) admitted to our hospital from January 2021 to June 2023. According to clinical manifestations and auxiliary examinations, they were divided into HZ group of 990 patients and VZV-associated CNS infection group of 40 patients.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China.
Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Unit of Scientific Research, Applied College, Qassim University, Buraydah, 52571, Saudi Arabia.
The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.
View Article and Find Full Text PDFCell Death Differ
December 2024
Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA.
Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!