The spatial distribution of local shelf heat transfer coefficients, Ks, was determined by mapping the transient temperature response of the shelf surface along the serpentine internal channels of the shelf while the temperature of the heat transfer fluid was ramped from -40 degrees to 40 degrees C. The solution of a first-order non-steady-state differential equation resulted in a predicted shelf surface temperature as a function of the shelf fluid temperature at any point along the flow path. During the study, the shelf surfaces were maintained under a thermally insulated condition so that the heat transfers by gas conduction and radiation were negligible. To minimize heat conduction by gas, the chamber was evacuated to a low pressure, such as 100 mTorr. To minimize heat transfers between shelves, shelves were moved close together, with a gap of approximately 3 mm between any two shelves, because the shelf surface temperatures at corresponding vertical locations of two shelves are virtually equal. In addition, this also provides a shielding from radiation heat transfer from shelf to walls. Local heat transfer coefficients at the probed locations h(x) ( approximately Ks) were calculated by fitting the experimental shelf temperature response to the theoretical value. While the resulting values of K(s) are in general agreement with previously reported values, the values of Ks close to the inlet are significantly higher than those of other locations of the shelf channel. This observation is most likely attributed to the variation of the flow pattern of heat transfer fluid within the channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10837450701481223 | DOI Listing |
Adv Mater
January 2025
Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.
Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Oceanography, Center for Earth System Sustainability, Universität Hamburg, Hamburg, Germany.
Oceanic subsurface observations are sparse and lead to large uncertainties in any model-based estimate. We investigate the applicability of transfer learning based neural networks to reconstruct North Atlantic temperatures in times with sparse observations. Our network is trained on a time period with abundant observations to learn realistic physical behavior.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Department of Clinical Surgery, Cty Clin Emergency Hosp, Sibiu, Romania.
This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.
View Article and Find Full Text PDFiScience
January 2025
School of Economics and Management, China University of Geosciences, Wuhan 430074, China.
In the emerging energy-sharing market, prosumers enhance resource allocation and promote low-carbon transitions through energy trade. Implicit carbon transfers in energy sharing necessitate scientific carbon responsibility allocation to guide prosumers' decisions in integrated electricity, heat, and carbon markets. To coordinate growing multi-prosumers, and stimulate multi-energy sharing and equitable carbon responsibility allocation, an innovative framework for joint multi-energy and carbon responsibility sharing is designed to enhance local energy transaction, carbon emission management, and mutual benefits under the guiding principles of individual rationality, low-carbon orientation, transparency, and scalability.
View Article and Find Full Text PDFHeliyon
January 2025
Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey.
Efficient thermal management is crucial for optimizing the performance and longevity of automotive engines, particularly as environmental regulations become more stringent and consumer demand for fuel efficiency increases. This paper investigates the energy and exergy performance of a wavy fin-and-tube radiator employing novel ternary nanofluids (TNFs) for enhanced automotive cooling. A theoretical comparative analysis was performed on four distinct ethylene glycol-water solution-based TNF configurations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!