Tumor-derived death receptor 6 modulates dendritic cell development.

Cancer Immunol Immunother

Eli Lilly and Company, BioTherapeutic Discovery Research, Indianapolis, IN 46285, USA.

Published: June 2008

Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6(-/-) mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-gamma. The effects of DR6 are mostly amended when these immature DC are matured with IL-1beta/TNF-alpha, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030700PMC
http://dx.doi.org/10.1007/s00262-007-0413-1DOI Listing

Publication Analysis

Top Keywords

tumor cells
12
cell surface
12
death receptor
8
cancer patients
8
antigen presenting
8
overexpressed tumor
8
surface phenotype
8
dr6
7
tumor
6
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!