Involvement of glomerular SREBP-1c in diabetic nephropathy.

Biochem Biophys Res Commun

Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.

Published: December 2007

The role of glomerular SREBP-1c in diabetic nephropathy was investigated. PEPCK-promoter transgenic mice overexpressing nuclear SREBP-1c exhibited enhancement of proteinuria with mesangial proliferation and matrix accumulation, mimicking diabetic nephropathy, despite the absence of hyperglycemia or hyperlipidemia. Isolated transgenic glomeruli had higher expression of TGFbeta-1, fibronectin, and SPARC in the absence of marked lipid accumulation. Gene expression of P47phox, p67phox, and PU.1 were also activated, accompanying increased 8-OHdG in urine and kidney, demonstrating that glomerular SREBP-1c could directly cause oxidative stress through induced NADPH oxidase. Similar changes were observed in STZ-treated diabetic mice with activation of endogenous SREBP-1c. Finally, diabetic proteinuria and oxidative stress were ameliorated in SREBP-1-null mice. Adenoviral overexpression of active and dominant-negative SREBP-1c caused consistent reciprocal changes in expression of both profibrotic and oxidative stress genes in MES13 mesangial cells. These data suggest that activation of glomerular SREBP-1c could contribute to emergence and/or progression of diabetic nephropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.10.038DOI Listing

Publication Analysis

Top Keywords

glomerular srebp-1c
16
diabetic nephropathy
16
oxidative stress
12
srebp-1c diabetic
8
srebp-1c
7
diabetic
6
involvement glomerular
4
nephropathy
4
nephropathy role
4
role glomerular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!