Effects of ozone on lung mechanics and cyclooxygenase metabolites in dogs.

Prostaglandins

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH.

Published: October 1991

To determine if acute exposure to ozone can cause changes in the production of cyclooxygenase metabolites of arachidonic acid (AA) in the lung which are associated with changes in lung mechanics, we exposed mongrel dogs to 0.5 ppm ozone for two hours. We measured pulmonary resistance (RL) and dynamic compliance (Cdyn) and obtained methacholine dose response curves and bronchoalveolar lavagate (BAL) before and after the exposures. We calculated the provocative dose of methacholine necessary to increase RL 50% (PD50) and analyzed the BAL for four cyclooxygenase metabolites of AA: a stable hydrolysis product of prostacyclin, 6-keto-prostaglandin F1 alpha (6-keto-PgF1 alpha); prostaglandin E2 (PgE2); a stable hydrolysis product of thromboxane A2, thromboxane B2 (TxB2); and prostaglandin F2 alpha (PgF2 alpha). Following ozone exposure, RL increased from 4.75 +/- 1.06 to 6.08 +/- 1.3 cm H2O/L/sec (SEM) (p less than 0.05), Cdyn decreased from 0.0348 +/- 0.0109 TO .0217 +/- .0101 L/cm H2O (p less than 0.05), and PD50 decreased from 4.32 +/- 2.41 to 0.81 +/- 0.49 mg/cc (p less than 0.05). The baseline metabolite levels were as follows: 6-keto PgF1 alpha: 96.1 +/- 28.8 pg/ml; PgE2: 395.8 +/- 67.1 pg/ml; TxB2: 48.5 +/- 11.1 pg/ml; PgF2 alpha: 101.5 +/- 22.6 pg/ml. Ozone had no effect on any of these prostanoids. These studies quantify the magnitude of cyclooxygenase products of AA metabolism in BAL from dog lungs and demonstrate that changes in their levels are not prerequisites for ozone-induced changes in lung mechanics or airway reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0090-6980(91)90083-rDOI Listing

Publication Analysis

Top Keywords

lung mechanics
12
cyclooxygenase metabolites
12
+/-
10
changes lung
8
stable hydrolysis
8
hydrolysis product
8
pgf2 alpha
8
alpha
6
effects ozone
4
lung
4

Similar Publications

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.

View Article and Find Full Text PDF

Vasoplegia in Heart, Lung, or Liver Transplantation: A Narrative Review.

J Cardiothorac Vasc Anesth

January 2025

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.

Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.

View Article and Find Full Text PDF

Improving lung protective mechanical ventilation: the individualised intraoperative open-lung approach.

Br J Anaesth

February 2025

CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain.

Despite the maturity and sophistication of anaesthesia workstations, improvements in our understanding of intraoperative mechanical ventilation, and use of less invasive surgical techniques, postoperative pulmonary complications (PPCs) are still a common problem in surgical patients of all ages. PPCs are associated with a higher incidence of perioperative morbidity and mortality, longer hospital stays, and higher healthcare costs. PPCs are strongly associated with anaesthesia-induced atelectasis, which predisposes to lung damage when partially collapsed lungs are subjected to mechanical ventilation.

View Article and Find Full Text PDF

Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.

Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!