Human endogenous retroviruses (HERVs) have been associated with multiple sclerosis (MS) pathogenesis. Several related HERV-W sequences have been implicated in disease occurrence and progression; the MS retrovirus (MSRV) is one such element whose envelope protein has been recently demonstrated to be involved in innate immune pathogenesis. To distinguish MSRV from other HERV-W sequences we analyzed the relative abundance of individual HERV-W env sequences by employing a real-time PCR approach using specific oligonucleotide primers and tissue samples from MS and non-MS patients. Our analyses reveal that ERVWE1 env-encoding DNA and RNA exhibited increased detection (p < 0.05) and expression (p < 0.01) in the brains of MS patients. Similarly, ERVWE1 env transcripts were inducible in glial cells (p < 0.05), while comparable changes in MSRV abundance were not observed. These results indicate that individual HERVs might have distinct roles in MS pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/aid.2006.0274DOI Listing

Publication Analysis

Top Keywords

human endogenous
8
multiple sclerosis
8
herv-w sequences
8
comparative expression
4
expression human
4
endogenous retrovirus-w
4
retrovirus-w genes
4
genes multiple
4
sclerosis human
4
endogenous retroviruses
4

Similar Publications

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.

View Article and Find Full Text PDF

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.

View Article and Find Full Text PDF

Background/objectives: Circadian clocks are endogenous systems that regulate numerous biological, physiological, and behavioral events in living organisms. Aging attenuates the precision and robustness of circadian clocks, leading to prolonged and dampened circadian gene oscillation rhythms and amplitudes. This study investigated the effects of food-derived polyphenols such as ellagic acid and its metabolites (urolithin A, B, and C) on the aging clock at the cellular level using senescent human fibroblast cells, TIG-3 cells.

View Article and Find Full Text PDF

Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!