A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. | LitMetric

Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability.

Bioconjug Chem

Center for Nanomedicine and Cellular Delivery, Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, MD 21201-1075, USA.

Published: January 2008

Improving the oral bioavailability of therapeutic compounds remains a challenging area of research. Polyamidoamine (PAMAM) dendrimers are promising candidates for oral drug delivery due to their well-defined compact structure, versatility of surface functionalities, low polydispersity, and ability to enhance transepithelial transport. However, potential cytotoxicity has hampered the development of PAMAM dendrimers for in vivo applications. In this article, we have systematically modified the surface groups of amine-terminated PAMAM dendrimers with acetyl groups. The effect of this modification on cytotoxicity, permeability, and cellular uptake was investigated on Caco-2 cell monolayers. Cytotoxicity was reduced by more than 10-fold as the number of surface acetyl groups increased while maintaining permeability across the cell monolayers. Furthermore, a decrease in nonspecific binding was evident for surface-modified dendrimers compared to their unmodified counterparts. These studies point to novel strategies for minimizing PAMAM dendrimer toxicity while maximizing their transepithelial permeability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc0603889DOI Listing

Publication Analysis

Top Keywords

pamam dendrimers
16
polyamidoamine pamam
8
acetyl groups
8
cell monolayers
8
pamam
5
dendrimers
5
surface
4
surface acetylation
4
acetylation polyamidoamine
4
dendrimers decreases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!